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This article is dedicated to the simulation of heat diffusion in layered anisotropic materials. The
three-dimensional heat diffusion equation for layered, anisotropic materials is used to calculate a
laser induced dynamic temperature distribution, the so-called thermal-wave field, in composites. In
the case of isotropic materials, the thermal-wave distribution is always axisymmetric around the
center of the heat source. In multilayered fiber reinforced composites, however, the distribution of
the thermal-wave field depends on their characteristic stacking sequence as well as on the geometry
and the frequency of the source. Together with undergoing experimental work, these theoretical
simulations allow us to compare the feasibility of different spatial excitation geometries, namely,
point source, line source, and grating source, to determine the thermal conductivity tensor of
composite materials. It is proven that the use of a grating suppresses the ill posedness of the inverse
problem and simplifies the procedure used for the determination of the thermal properties. © 2006

American Institute of Physics. [DOI: 10.1063/1.2335381]

INTRODUCTION

As mentioned in the thorough work on thermal diffusion
of Carslaw and J aeger,1 the mathematical theory of heat con-
duction in anisotropic media for the study of crystals was
developed by Duhamel in 1832.% Later on Stokes® pre-
sented a treatment that is essentially the conventional form
used by Carslaw and Jaeger in their approach. A complete
analytical study was performed by Boussinesq5 in 1901 and,
from the viewpoint of crystal physics, by Voigt6 a few years
later.

Conventional approaches using transformation of the
space variables were inadequate to provide full analytical
solutions for complicated cases of anisotropic solids under
various types of heat excitation. Some reports were, how-
ever, presented for simple cases in the 60s. Giedt and
HornBaker’ solved a simple case of a thermally orthotropic
plate in the steady state regime and Touryan8 assessed the
transient temperature field for a thermally orthotropic cylin-
drical shell. Chao® also presented a simplification of aniso-
tropic heat conduction to the orthotropic case whereas
Padovan'® considered the heat conduction in a thin cylindri-
cal shell of anisotropic media through the solution of an
approximately formulated differential equation. Later on, he
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presented the exact analytical solution of heat conduction in
infinite composite slabs and cylinders in the form of series
with discrete eigenvalues in each direction."" The solution of
the same problem was reported by Turkan and Tuna'? who
extended an approximate continuum theory on elasticity to
heat conduction.

Chang et al.”® and Chang14 did extensive work with the
use of Green’s functions to transform the heat conduction
differential equations for generally anisotropic media both in
cartesian and in cylindricalls’16 coordinates into integral
equations, which they solved by means of numerical meth-
ods. They investigated various geometries such as infinite
and semi-infinite domains as well as square, circular, and
annular disks and they found their results in good agreement
with exact solutions wherever possible. Numerical ap-
proaches were also applied by other researchers, such as
Katayama17 who employed the finite difference method and
found his calculated results in good agreement with experi-
mental data. The same technique was applied later by Petts
and Wickramasinghe18 obtaining similar successful results.
Cobble' solved also numerically the heat conduction in a
wedge by first transforming the partial differential equation
into an ordinary differential equation. The direct solution in
the integral form has also been applied by several
researchers.”’ >

In the last decade, a lot of progress has been achieved

© 2006 American Institute of Physics


http://dx.doi.org/10.1063/1.2335381
http://dx.doi.org/10.1063/1.2335381
http://dx.doi.org/10.1063/1.2335381

063521-2 Kalogiannakis et al.

both in the theoretical as well as the experimental field of
photothermal methods in anisotropic solids and composite
materials in particular. Salazar and co-workers™ " have
modeled thermal-wave scattering from various subsurface
structures including planar inclusions, spheres, and cylinders.
They have been able to successfully characterize and experi-
mentally verify with the mirage effect of the anisotropy of
unidirectional fiber reinforced composites. Similar results
were experimentally obtained by Lauriks et al.* for carbon
fiber reinforced composites.

A detailed numerical study in combination with experi-
mental results using infrared imaging with a pulsed heat
source was recently conducted by Krapez et al.*® Their simu-
lations were subsequently verified experimentally for har-
monic thermal waves (lock-in thermography) by Wu et al”’
and Karpen et al.>® The same group has recently developed a
semianalytical model,”® which uses the recursive algorithm
of Grosse and Wynands,40 to find the solution in the Fourier
coordinates. Then, an inverse fast Fourier transform (FFT)
transforms the temperature to the Cartesian spatial coordi-
nates allowing a fast numerical simulation of the thermal-
wave field at the surface of multilayered composites assumed
to have an infinite absorption coefficient. The latter assump-
tion limits the investigation on carbon fiber reinforced com-
posites, as, from the typically used fibers, carbon only has a
very high absorption coefficient at the laser wavelength.
Still, it was proven in practice that, because of the rather
transparent epoxy matrix, the absorption coefficient cannot
be considered infinite for carbon composites either. Our
model is adapted for a multilayer system that allows different
finite absorption coefficients for each layer. Thus, it can ac-
commodate composite materials with fibers other than car-
bonlike glass or Kevlar and mixtures of them in different
layers. It can moreover be used to find the temperature dis-
tribution in planes other than the surface. In what follows,
simulations and experimental measurements demonstrate the
formation of the temperature field at the surface and how it
can be used for the determination of the thermal properties as
well as the consisting stacking sequence of layers of a com-
posite laminate. The first part of this study is dealing with the
theoretical treatment of thermal waves in anisotropic multi-
layered media and simulations for different stacking se-
quences. It also describes a method for the determination of
thermal properties using grating excitation.

FORMULATION OF 3D ANISOTROPIC HEAT
DIFFUSION BY THE TRANSFER FUNCTION
FORMALISM

The so-called transfer function formalism*' was used to
solve the heat diffusion equation for multilayered anisotropic
solids such as composite laminates [Fig. 1(a)]. In the present
study, a periodically modulated laser induced heat source
with different spatial geometries is considered. Firstly, the
method will be used to illustrate the formation of the
thermal-wave field in unidirectional, cross-ply, and quasi-
isotropic laminates for different excitation frequencies. Sec-
ondly, for the determination of the thermal properties of the
composite material, the results of the theoretical method will
be fitted to the experimental measurements.
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FIG. 1. (a) Fiber reinforced composite laminate and (b) rotation from the
natural (global) to the principal system.

The starting point is the heat diffusion equation for a
single ply of a composite material. A single ply is an ortho-
tropic material, which has by definition, at least two orthogo-
nal planes of symmetry, where material properties are inde-
pendent of direction. In such a material, thermal conductivity
is not scalar but a tensor. In the coordinate system of the
principal axes (where the number of nonzero elements of the
tensor is minimized) coinciding with the axes parallel and
perpendicular to the fibers, the heat diffusion equation for a
single ply is expressed as follows:

a2T5+k &2T5+k 77, Ca—TS—Q (1)
a2 g TR g TP T

ki

where k| (W/mK) and k; (W/mK) are the thermal conduc-
tivity values parallel and vertically to the fibers, respectively.
p (kg/m?) is the density, C (J/kg K) is the specific heat of the
material, and Q (W/m?) is the periodically modulated heat
source intensity,

1 .
0= Eoﬁe‘ﬁze"”tg(x,y), (2)

where I, (W/m?) is the optical intensity, 8 (m~") is the op-
tical absorption coefficient, w (rad/s) is the excitation fre-
quency, and g(x,y) is dimensionless and quantifies the shape
of the excitation in the x-y plane on the surface of the object
at z=0. The shape of the source had Gaussian, line-focused
Gaussian, or grating distribution (expanded Gaussian-line-
focused Gaussian distribution can be used in practice when
laser power is insufficient to have good signal; to eliminate
the influence of the diffusion vertically to the axis of the line
source, the resulting field is integrated along this direction—
combined with a spatial square-wave filter), thus

—(X2+y2)/R2

glx,y)=e Gaussian (3a)

2 2
= LPRAHOIRA) Line-focused Gaussian (3b)
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X (1 + sgn{sin{@} }) Grating,

(3¢)

where R (m) is the radius of the Gaussian distribution, Ry
(m) and Ry (m) are the axes of the asymmetric (elliptical)
line-focused Gaussian distribution, X (m) is the wavelength
of the grating, and x, (m) is the position of the beam (maxi-
mum of the Gaussian distribution) with respect to the square-
wave pattern. The three different distributions are depicted in
Fig. 2.

If the orthogonal coordinate system xyz is rotated from
the principal directions, the expression of the heat diffusion
in a single ply [Eq. (1)] is changed. If we assume a rotation
angle 0 [Fig. 1(b)] of both x and y axes (x-y plane coincides
with the plane of the composite laminate), the general ex-
pression for an orthotropic material becomes

(MR A +(GRD)]

k a2—€+k ,&2—T+k,&2—T+(k +k, )ﬂ=pC6—T+Q
Tox? o oy TFa2 Y Y oxay a
4)
with
ky=k cos? O+ k, sin® 6,
kyy =k, = (k, —kj)sin 6 cos 6, (5)

kyy =k, cos? O+ kH sin’ 0, kzz =k, .

Assuming a harmonic time dependence of the solution, after
applying a Fourier transform in the time domain and a two-
dimensional (2D) Fourier transform in the spatial domain,
the diffusion equation reduces to an ordinary second order
differential equation with respect to the third spatial coordi-
nate,

T T I ~
— +b— +cT=—=BePG(f..f,), 6
@ atb, e 5 Be (fofy) (6)
where
T(fx’fy’z) = f J T(x,y,z)e_2”(fxx+fvy>dxdy, (7)
—~ +e . r o
G(fufy) =f f g(x,y)e ™ Y dxdy, (8)
and
a=k, b=0,
c=—4mlkof + ko fs + 2k, fof, ] - jopC, 9)

where f, and f, are the Fourier coordinates. The coefficients
a,b, and ¢ have a different influence on the formation of the
temperature field. a is mainly related to the transfer of energy
along z and b describes beam steering effects.*' Notice that,
in the case of multilayered composites, b equals zero. ¢ in-
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dicates a preferential spreading of the spectrum, depending
on the various conductivities, which result in a loss of field
symmetry. The general solution of Eq. (6) consists of the
solution of the homogeneous equation and the particular so-
Iution for the considered excitation. For a single layer, it can
be written as

T(fx,fy,Z, w) = U(fx»fy’ w)emlz + V(fx’fy’ w)emzz

+F(fx9fyaz,w)a (10)
where
F(f )—1<;>1 FG(fufy) (11)
x?f‘y,Z,w - 2 aﬂ2+c Oﬂe x’fy s
and
c
mpp==+\-=
a
2 2 .
. \/4712[kx x+kyyfyk+ 2k ff, ]+ ]pr, -

Z

where U and V (K) are coefficients, which are to be found
from the boundary conditions, and m, , (m™') represents the
effective complex thermal wave number along the z axis.
The real part of the inverse quantity 1/m;, represents the
effective thermal diffusion length along the z axis.

MULTILAYER MODEL

Composite materials consist of a stack of thin layers (a
single layer is called lamina) [Fig. 1(a)]. When a localized
external heat source is applied to a composite sample, the
thermal-wave field is formed according to the contribution of
different layers. As will be shown in the following sections,
the anisotropy of each of the material layers within the reach
of thermal diffusion on the time scale of the modulation adds
a unique feature to the thermal response at the surface. Our
analytical solution for a multilayered model also allows us to
describe delamination defects, via modified boundary condi-
tions between the layers.

Each lamina composing the laminate is unidirectional,
elastically, and thermally orthotropic, with its thermal con-
ductivity given in global coordinates by Eq. (5). A schematic
representation of the structure under investigation is depicted
in Fig. 3. Every layer i is characterized by the thermal con-
ductivity coefficient tensor Kk; and the scalar density p;, the
specific heat c;, the absorption coefficient B3;, and the thick-
ness /;. It is assumed in our study that there is no reflection of
light at the interfaces between layers and that all of the prop-
erties are constant within a layer. The harmonic power den-
sity in the ith layer is given by the Beer-Lambert law ex-
pressed as follows:

— IOBig(x7y)

2 exp[- Bi—l + Bz + Ti—l)]eXP(iwt) . (13)

0,

where
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FIG. 2. (a) Gaussian, (b) line-focused Gaussian, and (c) grating heat source
distribution.

i1 i-1
Bz‘—l = 2 Byl and 71‘—1 = E L.
n=1 n=1
The layers of the composite lie perpendicular to the z
axis and the boundaries of the laminate are in contact with
infinitely extended air. The equations can be solved in a
straightforward way for a multilayered geometry to provide
the thermal-wave field at any depth considering the continu-
ity of temperatures and heat flows at the interfaces. For the
choice of heat sources described in Eq. (10), the set of solu-
tions for the system temperature profile can be formulated as
follows (assuming that there are N layers including the two
semi-infinite layers—of air or any other material—at the bor-
ders in the z direction):

;f()(fx’fy’ Z, w) = V()(fX’f)" w)efmoz’

J. Appl. Phys. 100, 063521 (2006)

Tl (fx?fy’za w) = Ul U‘x’fy, (l))emlz
+ Vl (fx’fy’ (’-))e—mlz
- Fl(ﬁ\"?fy’Z?w) s

TZ(fx?f)wZ, (J)) = Uz(f)c?fy’ &))€m2(2+ll)
+ Vo(fafys w)e &)

- Fz(fx,fy,Z,w),

Ti(fofrzs®) = U(fofyp )"0
FV(f o))
- Fi(fx’.f_\mz’ w) ,

TN—I (fxsfy,Z, a)) = UN—] (fx,fy’ w)eillN_](Z+[N_2)
+ Vo (fx’f v w)ef’"N—l(”jN—z)

- FN*](fX’fy’Z» (1)),

TN(fxsf‘y» 2, (1)) = UN(.f,wfy’ w)emN(Z+[N_]) - FN(fxaf:w 2 (1)) s

(14)
where
=, Qi(.fx’fwz’w)
F‘ YA ES) == 5
W tpzo) aB; +c;
_ éi(fx’fy»za (1))
klZZIBlz - 47T2[klx\f% + kl\}f% + Zki-yf,\:fy] - jwpici .
(15)

Continuity of temperature and normal heat flux at the
interfaces is equivalently valid in the temporally and spa-
tially Fourier-transformed solution T(fY fy,2,0), just as in
the Cartesian formulation 7T(x,y,z,w).”” Applying these
boundary conditions yields a set of 2N linear equations of the

2N unknown coefficients, U=[U,;,U,,...,Uy] and V
:[V(),Vl, ,VN,I],
A-U=F, (16)

which can be solved very fast for a reasonable number of
layers. The three-dimensional Fourier-transformed tempera-
ture field can thus be determined for every value of f,, Sy 2

and w. The band diagonal matrix A and the vectors U and F
of Eq. (16) are given by
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A=
0 0 0 0 O 0
0 0 0 0 O 0
0 0 0 0 0 0
0 0 0 0 O 0
r U, b
UV—I
VV—I
Ui
Vi
- UL
U= ,
Via
U,
2
U
Vi
L Dy

FV(_ Tv—l) - FV—I(_ Tv—l)
(B kJm,_ 1k, )F,(= l_v—l) — (By/my)F (= Tv—l)

F=1_)=F_ (=1
(Bikimi_iki ) Fi(= i) = (Bio/mi)Fiy (= 1) |,

~
I

Fy(=1) - F(=1)
(Bakolmyk)Fy(=1,) = (By/m)F (= 1,)

F,(0)
L (Bi/m)F,(0) i
bl»=kiml~/ki_1mi_1, W=k0m0/k1m1, (17)

where the parameters b; play the role of thermal-wave inter-
facial coupling coefficients and w=1/b,. These coefficients
quantify the degree of thermal inhomogeneity across the
boundary planes (ratio of thermal impedances)‘&45 and re-
duce to an effusivity ratio in the one-dimensional case, where
the thermal effusivity & (Jm™2 K™ s7!2) is defined as fol-
lows:
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0 0 0 0 0 0
0 0 0 0 0 0
—emi-iet 00 0 0 0
M-t 0 0 0 0 0
0 1 1 —e™mh —emh
0 by —b, —e™ll gmh
0 0 0 1 1 -1
0 0 0 1 -1 w
[
e=VkpC. (18)

To find the time harmonic solution in the Cartesian coordi-
nates, one has to apply the inverse Fourier transform,

400
T(x,y,z,w) = J J T(fofyoz. @)X ™ 0df df,. (19)

The most convenient way to evaluate Eq. (19), is by apply-
ing FFT,” which is much faster than numerical integration.
Some possible problems with FFT are discussed in Ref. 39,
but provided a laterally wide enough integration range and
sufficiently fine discretization, we did not encounter prob-
lems.

THEORETICAL SIMULATIONS FOR POINT SOURCE
EXCITATION

Structural design with composite materials is based on
the lay-up (stacking) of differently oriented layers (of unidi-
rectional long fibers) composing a laminate. Optimizing the
stacking sequence, one can tailor the global mechanical/
thermal properties and fulfill certain technical specifications.
It is interesting in this framework to gain some insight on the
formation of the thermal-wave field under the influence of
the stacking sequence of the composite. Although not dem-
onstrated here, preliminary work®® has shown that the ampli-
tude and especially the phase of the temperature distribution
can be used to determine the (sometimes unknown) stacking
sequence. Inverse methods and neural networks can be used
to find the underlying fiber orientations from the surface re-
sponse.

In the following analysis, we demonstrate how the tem-
perature amplitude and phase distribution changes with fre-
quency as a result of deeper penetration. Two different com-
posite lay-ups were chosen to serve this goal. The first one is
a semi-infinite composite with the fibers of the surface layer
cross oriented to the bulk material [0°/90° ], and the second
is the classical quasi-isotropic laminate [0°/x45°/
900]5.46’47 The excitation source in these simulations repre-
sents a tightly focused Gaussian laser beam [Fig. 2(a)], de-
scribed by Eq. (3), with a radius R=100 um in order to
allow the visualization of the anisotropic three-dimensional
(3D) effects. All simulations are conducted for unit intensity



063521-6 Kalogiannakis et al.
©
Layer 0 Layer Layer Layer Layer
1 2 m-1 m
k(1) K(2) k(m-1) k(m)
e(1) c(2) cm1) | c(m)
R ) p(2) p(m-1) p(m)
B(1) B(2) B(m-1) B(m)
©
| | I | 1
© | [ I [ {
0 Q) i(2) {(m-2) Im-1) ©

FIG. 3. Schematic representation of the multilayered model of a composite
laminate.

Iy=1 (W/m?). All the material properties used are given in
Table 1.*® The fibers of the 0° layers of the surface are
supposed to be aligned along the vertical direction in the
figures.

For both laminates considered, the results of the phase
distribution shown in Figs. 4 and 5 evoke the following
points.

*  When the frequency is high, the thermal-wave field is
dominated by the geometrical shape of the excitation
source. The thermal diffusion length is too short at all
directions to make any thermal anisotropy visible and
the field at the surface appears to have a concentric
circular form (i.e., a planar projection of the Gaussian
source). More generally, the appearance of the aniso-
tropy depends on the ratio of the source radius with
respect to the effective thermal diffusion length for a
particular frequency.

* As the frequency decreases, the field starts becoming
elliptical under the influence of the thermal anisotropy.
The eccentricity of the elliptical isothermals is in-
creased all along with decreasing frequency when
close to the source. The visibility of the preferential
thermal diffusion along the fibers is gradually en-
hanced and the isothermals develop to concentric el-
lipses.

*  When the frequency is low enough allowing the ther-
mal wave to reach the second layer, with the orienta-
tion of the fibers at either 90° or 45°, then the concen-
tric ellipses start deforming. In the first case (Fig. 4),
the properties of the bulk material contribute so that
the axes of the thermal diffusion ellipse are gradually

TABLE I. Material properties and geometrical parameters used for the
simulations of the three-dimensional thermal-wave field in a fiber reinforced
composite material.

Material properties Source parameters Geometry
k,=10.23 W/m?, k, =0.56 W/m? R=100 wm [;=125 um
C=793 J/kgK Iy=1 W/m?
p=1550 kg/m?
B=10° m™!

k,;=0.0258 W/m?
C,.=1003 J/kg K
Pair=1.29 kg/m>

J. Appl. Phys. 100, 063521 (2006)
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FIG. 4. Temperature phase maps at the surface of a ply (125 wm) cross
oriented to a semi-infinite bulk material (0°/90°).,., which is periodically
heated with a Gaussian excitation source (R=100 um) at (a) 1, (b) 0.1, and
(c) 0.01 Hz. The material properties are given in Table 1.
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FIG. 5. Temperature phase contour maps at the surface of a quasi-isotropic
composite material (0°/+45°/90°)g, which is periodically heated with a
Gaussian excitation source (R=100 um) at (a) 0.1 and (b) 0.005 Hz. The
material properties are given in Table L.
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inverted far from the source. In the second case (Fig.
5), the ellipse is rotated and compressed under the in-
fluence of the different fiber orientations and when the
thermal diffusion length is longer than the thickness of
the entire quasi-isotropic laminate, the field becomes
approximately circular just like an isotropic material.
The latter effect demonstrates that a quasi-isotropic
laminate is macroscopically thermally isotropic.

e Far away from the source (several thermal diffusion
lengths), the field is always configured according to
the properties of the bulk material. The frequency only
affects the scale of the effect. Consider, for instance,
the first laminate (Fig. 4). When the frequency is low,
the amplitude of the temperature oscillation of the in-
verted ellipse will be significant with respect to the
maximum amplitude. When the frequency is very
high, the ellipse will still be theoretically inverted but
far away from the source where the amplitude of the
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oscillation is so small that is probably experimentally
not detectable.

* To make the previous point clearer in a phenomeno-
logical manner, we are led to the conclusion that the
thermal-wave field has the same form of phase distri-
bution no matter the excitation frequency. The charac-
teristic morphology of the phase distribution depends
only on the material properties. What the frequency
affects is the scale of its representation. By observing
Fig. 4 we see that increasing the frequency is as if one
is zooming in to the center [Fig. 4(a) is a magnification
of the central part of Fig. 4(c)]; notice that the dimen-
sions of the area shown are the same for all the
frequencies.

DETERMINATION OF THERMAL AND OPTICAL
PROPERTIES

The simulations in the previous section illustrate that the
thermal properties of the layers have a sophisticated influ-
ence on the thermal-wave field. Therefore, the inverse prob-
lem, extracting the thermal properties from the experimen-
tally assessed thermal-wave field, is rather ill posed and
complex. Moreover, the inverse problem is numerically very
demanding in terms of computing time, because a number of
iterations are needed to converge from an initial guess to the
actual solution. This initial guess is therefore also crucial in
the process.

The optothermal properties of a composite material are
the thermal conductivities parallel and perpendicular to the
fibers, k; and k ,, respectively, or k;, k,, and k3 (in the case
that the lateral thermal conductivity perpendicular to the fi-
bers is not equal to the one across the thickness), the specific
heat C, and the absorption coefficient 8. The simplest con-
figuration to determine these is to perform experiments on a
simple, thermally thick (theoretically semi-infinite) unidirec-
tional laminate. The 3D thermal-wave problem in the wave
vector domain is then reduced into solving a simple 2 X 2 set
of equations (described by Refs. 16 and 17 with index m
=1). The surface solution in the Fourier space is then given
by

1 B
Op(frnfy ©) = —0< )(
2\ B+my ) \kymg+k, m

)6(1;,)3.),

(20)

where 8 (m™') is the absorption coefficient of the composite
and my and m; (m™!) are the effective thermal wave numbers
in the air and the semi-infinite composite, respectively, given
by

my = \/4ﬂ2(fx+fv)2+ﬂ, 1)
: Ayir
with

k..
—— (m¥s), (22)
pairCair

Qair =

being the so-called thermal diffusivity, and
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FIG. 6. The phase at the center of the Gaussian excitation with R
=100 um approaches that of uniform heating (—45°) as the frequency in-
creases. The material is a semi-infinite solid with properties kj=k
=1 W/mK, C=800J/kgK, p=1550 kg/m?, and B=10° m™' in contact
with air (properties given in Table I).

e \/4ﬂl<kfi+kifi> +jopC 23

ky

To solve this problem in practice, we have to define an area
large enough to describe the thermal-wave field (the tem-
perature amplitude at the edges of the area must be negli-
gible) and avoid thus aliasing. Then the area is discretized
densely enough to find convergence to the desired level of
accuracy.

Before proceeding to the fitting process for the determi-
nation of the properties, we conducted a parametric study in
order to analyze the influence of each property to the tem-
perature field. The excitation frequency was set at 0.5 Hz and
the Gaussian was tightly focused at R=100 um so that the
3D effects are emphasized [Fig. 6]. Unless otherwise speci-
fied, the conductivities along and perpendicular to the fibers
are kj=k, =1 W/mK, the specific heat C=800 J/kg K, and
the density p=1550 kg/m?. The study was conducted both
for highly (carbon fiber reinforcement 8=10° m~' approxi-
mately) and low (glass fiber reinforcement S=10°> m~' ap-
proximately) absorptive unidirectional semi-infinite compos-
ites in contact with air (properties given in Table I). The
results are presented in terms of normalized amplitude and
phase along the fibers and through the center of the Gauss-
ian.

In highly absorptive composites, the ratio k;/k, affects
both the normalized amplitude and the phase of the tempera-
ture field (Fig. 7). With increasing ratio, both peaks become
obtuse along the fibers due to the higher thermal diffusion.
One can readily notice from Eq. (22) that the thermal diffu-
sivity is proportional to the thermal conductivity. Regarding
the normalized amplitude, the effect is stronger at high ther-
mal conductivities with much more apparent change in the
distribution. On the other hand, for low thermal conductivi-
ties (below the thick solid line representing the distribution
for the reference property values), it converges to a certain
distribution as the thermal diffusion length on one direction
becomes shorter than the radius of the Gaussian excitation.
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FIG. 7. Normalized amplitude and phase of temperature along the fibers and
through the center of the Gaussian excitation heat source (R=100 um) as a
function of the ratio k/k . The material is semi-infinite unidirectional com-
posite with C=800 J/kg K, p=1550 kg/m?, and S=10° m™! in contact with
air (Table I).

The significance of the geometry of the excitation at low
conductivities is more profound in the phase distribution. For
all the simulations except the last one (thin solid line), the
phase is linearly decreased with distance from the center of
the source but for that lowest ratio, there is a plateau indi-
cating the transition. As shown in Fig. 8 and formulated in
Eq. (22), the specific heat has the inverse effect on the ther-
mal diffusion compared to the one of the conductivity with
the normalized amplitude not affected for the range consid-
ered.

In composites with low absorption coefficient, the opti-
cal penetration has a strong influence on the formation of the
thermal-wave field. For high thermal conductivities, the nor-
malized amplitude similarly increases with distance but to a

@
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FIG. 8. Normalized amplitude and phase of temperature along the fibers and
through the center of the Gaussian excitation heat source (R=100 um) as a
function of C. The material is semi-infinite unidirectional composite with
k=k,=1 W/mK, p=1550 kg/m3, and B=10° m™' in contact with air
(Table I).
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FIG. 9. Normalized amplitude and phase of temperature along the fibers and
through the center of the Gaussian excitation heat source (R=100 um) as a
function of the ratio k;/k, . The material is semi-infinite unidirectional com-
posite with C=800 J/kg K, p=1550 kg/m?, and 8=10?> m~! in contact with
air (Table ).

much higher level (Fig. 9). As the thermal-diffusion length
becomes shorter for lower thermal conductivities, thermal
diffusion becomes less important than optical penetration in
the formation of the thermal-wave field (thin solid line). The
phase is also clearly much more affected with a change of
the offset at the center of the excitation. The plateau is not
present because of the optical penetration, but a similar effect
is also apparent with a turning point in the linear pattern of
phase decrease (thin solid line) and the subsequent intersec-
tion of the neighboring curves. Comparing Figs. 8 and 10,
the specific heat value is rather more effective for low ab-
sorption regarding the normalized amplitude. The angle of
the phase distribution in the same figures, on the other hand,
is slightly sharper and displaced for lower absorption coeffi-

()]
T 1 . . . . . '
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B 08 - - 1000 J/mK
e ( Fx 1500 J/mK
© 0.6 -—--500J/mK A
o FA
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T
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FIG. 10. Normalized amplitude and phase of temperature along the fibers
and through the center of the Gaussian excitation heat source (R
=100 um) as a function of C. The material is semi-infinite unidirectional
composite with ky=k, =1 W/mK, p=1550 kg/m?, and S=10°> m! in con-
tact with air (Table I).
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FIG. 11. Normalized amplitude and phase of temperature along the fibers
and through the center of the Gaussian excitation heat source (R
=100 um) as a function of B. The material is semi-infinite unidirectional
composite with kj=k, =1 W/mK, C=800 J/kgK, and p=1550 kg/m? in
contact with air (Table I).

cient values. This is also apparent in Fig. 11 where the pure
effect of the absorption coefficient on the thermal-wave field
in an isotropic (kj=k ) material is shown.

From the previous analysis for focused excitation it is
evident that solving the inverse problem has a problem of ill
posedness because different parameters have similar effects
on the signal. A priori information on some parameters thus
has to be used as much as possible. In the following, we
illustrate that also by using other source geometries, the in-
fluence of some parameters can be canceled, and thus the ill
posedness of the problem for other parameters of interest can
be lifted.

The first geometry is a simple Gaussian line source de-
scribed by Eq. (3b) and shown in Fig. 2(b) applied along and
perpendicular to the fibers. In this case, the diffusion along
one axis in the plane is eliminated and the field can be de-
scribed in two dimensions. This means that f, and f, in Eqgs.
(20)—(23) are alternately zero and, respectively, k; or k, are
not involved in the solution. The properties are then found by
fitting the entire thermal-wave field along and perpendicular
to the fibers for one or more excitation frequencies, prefer-
ably low enough to have adequate diffusion with respect to
the line source width. Since the field is given along one
dimension at the surface, this means a considerable reduction
of the computation time. Moreover, the requirement for large
memory in the case of matrix operations is eliminated.

The second geometry is similar in eliminating one of the
plane conductivities, but the fitting procedure is simplified
providing less uncertainty about the validity of our measure-
ment. In practice, this geometry is achieved by expanding a
Gaussian laser beam and sending it through a square-wave
pattern, which is imaged by a lens onto the sample surface.
The pattern has a wavelength \ as described by Eq. (3c) and
shown in Fig. 2(c). The resulting photothermal field is shown
in Figs. 12 and 13. The analytical solution in the simple case
when uniform illumination combined with a grating, which
is a sinusoidal spatial filter is shown to be given by
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FIG. 12. Normalized amplitude and phase modulation of temperature per-
pendicularly to the grating bands (A\=4mm) and the fibers as a function of
frequency. The material is semi-infinite unidirectional composite with &
=1 W/mK, C=800 J/kg K, and p=1550 kg/m? in contact with air (Table
1).

_h(_B :
O6(fr0) = 2 <ﬁ+ml><kairmo+kiml>
Mol r o X)ofp ot
x 2{5<fx+>\) 5(f* 7\>] ’ .

where §'is the Dirac function and m, and m, (m~!) are given
in this case by

mo=\/47f, + 1 (25)
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FIG. 13. Normalized amplitude and phase modulation of temperature per-
pendicularly to the grating bands (A=4 mm) and parallel to the fibers as a
function of frequency. The material is semi-infinite unidirectional composite
with k=10 W/mK, k, =1 W/mK, C=800 J/kg K, and p=1550 kg/m? in
contact with air (Table I).
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FIG. 14. Modulation amplitude of the normalized amplitude and phase of
temperature as a function of frequency for different k; values. The first value
ky=1 W/mK corresponds to an isotropic material or the modulation perpen-
dicularly to the fibers. The grating has A=4 mm and the material is semi-
infinite unidirectional composite with &k, =1 W/mK, C=800J/kgK, B
=10° m™!, and p=1550 kg/m? in contact with air (Table I).

\/ 4k + jwpC \/ 4k T2+ jopC
my == or N
kJ_ kJ_
(26)

depending whether the filter is positioned vertically or paral-
lel to the fibers, respectively. The inverse Fourier transform
of Eq. (24) gives the resulting temperature oscillation in
space. The modulation depth of the temperature amplitude
and phase can be easily determined from the absolute differ-
ence of the extremes of the modulation.

The measurement is no more bound to the excitation
geometry (radius of the source or line width) and the previ-
ously fitted field is reduced to fitting two values, the ampli-
tude of the field’s normalized amplitude and phase modula-
tion. The only a priori condition is that the excitation
frequency has to be low enough so that the thermal waves
from the opposite sides of an unheated zone due to the grat-
ing have effective wavelengths of the order of A/4 so as to
interfere with one another. As can be seen in Figs. 12 and 13
the modulation amplitudes are naturally reduced with lower
frequency as a result of longer thermal diffusion lengths and
increased washing out of periodical warm and cold zones.
Apart from the numerical advantages already specified for
the first approach of 2D analysis, the second fitting proce-
dure is even faster as we do not fit the entire thermal-wave
field along one dimension but only two values. Moreover,
fitting is reduced to one graph depicting modulation ampli-
tudes as a function of frequency (Figs. 14-16).

In the case that the laser power is insufficient to have
good signal in practice, the beam can be line focused and
then passed through the square-wave filter [Fig. 2(c)]. To
eliminate the influence of the thermal diffusion vertically to
the line source, one can integrate the resulting field in this
direction.
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FIG. 15. Modulation amplitude of the normalized amplitude and phase of
temperature as a function of frequency for different C values. The grating
has A=4 mm and the material is semi-infinite unidirectional composite with
k=10 W/mK, k,=1 W/mK, =10’ m~!, and p=1550 kg/m? in contact
with air (Table I).

CONCLUSIONS AND DISCUSSION

In conclusion, the thermal-wave field in composite ma-
terials is much affected by the stacking sequence of the con-
sisting layers. Theoretical simulations have demonstrated
that in a quasi-isotropic sample the field alters from highly
anisotropic to nearly isotropic, depending on the excitation
frequency, which dictates the thermal diffusion length.

For the determination of the thermal properties, a
method was proposed, which overcomes the ill posedness of
the inverse problem. In contrast to the traditional approaches
using focused or line-focused excitation, where several prob-
lems arise from this ill posedness, one can more accurately
obtain the properties by applying a spatial filter on a uniform
illumination, which results in a spatially modulated thermal-
wave field. Moreover, the fitting process of the scalar modu-
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FIG. 16. Modulation amplitude of the normalized amplitude and phase of
temperature as a function of frequency for different 8 values. The grating
has A=4 mm and the material is semi-infinite unidirectional composite with
k=10 W/mK, k, =1 W/mK, C=800 J/kg K, and p=1550 kg/m? in con-
tact with air (Table I).
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lation depth of the amplitude and phase of the thermal-wave
field is significantly faster than fitting the entire field, which
was needed in the former methods.

Our theory is neglecting the possible presence of internal
optical reflections, optical diffusion, and assumes constant
thermal properties within a layer. In practice, e.g, with fiber
composite materials, these conditions are not perfectly ful-
filled, and not even well known. However, optical effects can
be usually taken into account by fitting an effective optical
absorption coefficient to the data, or they are smeared out
due to the large number of fibers. Especially in the case of
carbon fibers, the samples are quite opaque, and the effective
optical penetration depth is typically quite small compared
with the thermal diffusion length, thus its choice is not so
crucial for the lateral thermal diffusion characteristics.

Experimental verification of the theoretical predictions,
which is currently being conducted, proves the potential of
this work, and it is going to be presented in due time.
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