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The new algorithm of the thermal conductivity and thermal diffusivity determination from the
transient hot-wire method has been applied to measurements performed in several solid materials.
The algorithm makes use of the exact formula for the temperature variations, instead of its simple,
asymptotic form that has been employed earlier. In the process of the least-square optimization of
the residual function three parameters are obtained; thermal conductivity, thermal diffusivity, and
the initial temperature. Two different variants of the method are presented: the classical one with the
power kept constant during the measurements and the newly introduced constant current technique.
The latter one has an advantage of requiring simpler conditioning electronics, and can therefore be
recommended in space applications. The results of data processing show that thermal conductivity
can be reliably determined even from the nonasymptotic part of the temperature measurements. The
determination of thermal diffusivity is more difficult and requires high quality temperature data
from the whole measurement interval. ©1997 American Institute of Physics.
@S0034-6748~97!00911-8#

I. INTRODUCTION

The transient hot-wire method has long been success-
fully applied to measure the thermal conductivity of gases,1

liquids,2 as well as solid materials.3,4 In this approach, a con-
stant powerQ is continuously supplied by a current to the
long, thin cylinder immersed in the medium. Heat conduc-
tion of the medium determines the rate of the temperature
increase within the wire. To derive the thermal conductivity
value l one usually employs the asymptotic, linear part of
the temperature versus log~time! relation; its slope is in-
versely proportional tol. It is, in principle, possible but very
difficult to obtain the thermal diffusivity from measurements.
It can either be done by using the initial~nonasymptotic! part
of the data2 or combining measurements performed for dif-
ferent currents,5 or, with the least accuracy, by evaluation of
the intersection of the tangent to the linear branch with the
abscissa, ln (t0)50. In the most advanced approach so far, by
Håkanssonet al.,6 thermal conductivity and thermal diffusiv-
ity were both derived from the exact formula for the constant
power method, valid in the whole interval of measurements.
To account for power variation~the measurements were ob-
tained for constant currents! Håkanssonet al.6 introduced
corrections to the constant power expression.

Recently, thermal conductivity measurements have been
proposed and accepted for several near-future planetary mis-
sions. The surface science package~SSP! experiment on the
Huygens probe to Titan will contain a couple of thermal
conductivity sensors to measure the properties of the planet’s
atmosphere as well as of the hypothetical ocean on the
surface.7 The penetrator-temperature profile penetrator-

thermal conductivity~PEN-TP1PEN-THC! probe, a part of
the multipurpose sensors for surface and subsurface science
~MUPUS! experiment suite, is going to be sent to comet
Wirtanen on board the RoLand lander during the Rosetta
mission in order to determine the thermal conductivity of the
subsurface layer.8 Space experiments put very stringent con-
straints on the experimental setup and available resources
~mass, power, data rate, etc.!, therefore it is natural in this
context to extract as much as possible from the available data
and to design the experiment in the optimal way. For ex-
ample, a lot can be gained if the constant power method is
replaced by the technically much simpler constant current
method. Similarly, a lot of power will be spared on the av-
erage if the thermal conductivity is determined from a short
duration measurement, even though the asymptotic limit is
not reached.

In this study we want to address three of such issues.
First, we present the full, nonasymptotic formulae for both
the constant power and the constant current method. The
former has long since been used~theory and references to the
earlier papers are given in Ref. 9!, but, to our knowledge, the
latter has never been described. Second, we show how to
obtain the thermal conductivity from an arbitrary subinterval
of the whole data set proving in this way that it is not nec-
essary to use exclusively the temperature data from the
asymptotic range. Finally, we demonstrate that it is possible
to derive also the thermal diffusivity from measurements,
although less accurately than the thermal conductivity. Con-
cerning the second and the third issue, we come to a similar
qualitative evaluation of the method as given by Ha˚kansson
et al.,6 although we have used a completely different experi-
mental setup and applied a new method of data processing.
Since, in many cases, it is difficult to directly compare ther-
mal parameters obtained from measurements with the values

a!Also at Max-Planck-Institut fu¨r Aeronomic, D-37191 Katlenbura-Lindau,
Germany.
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referenced in the literature because of a different type of
material used or a different method of sample preparation,
we will focus our attention on the performance of the algo-
rithm and the internal consistency of results. We start with
the short presentation of equations, followed by a brief de-
scription of the experiments and by the presentation of re-
sults obtained for different compact and granular materials:
teflon, dunite powder, compact, and porous water ice. Part of
the experimental data and the interpretation in terms of the
asymptotic formula for the thermal conductivity has already
been published by Seiferlinet al.4 In the last section we dis-
cuss the application of the method to the space experiments
and summarize our work.

II. METHOD OF DATA INTERPRETATION

We use the standard experimental configuration for the
hot-wire method and, following other researchers,1,2,9,10

model it as an infinite cylindrical source of heat power sur-
rounded by a uniform medium characterized by densityr,
thermal conductivityl, and specific heatc. The wire with a
radiusr , densityrv , and specific heatcv , is assumed to be
a perfect heat conductor with the thermal capacity per unit
length S52pr 2rvcv . We neglect the heat resistance be-
tween the wire and the medium. If the power dissipated per
unit length isq, then the temperature of the wireT will vary
with time t according to the formula

T2T05
2qa2

p3l E
0

` 12exp~2atu2/r 2!

u3D~u,a!
du, ~1!

where T0 is the initial temperature at the moment of the
power switch on,a5l/rc is the thermal diffusivity, anda
52rc/rvcv . The denominator in~1! depends on the Bessel
functionsJ0 , J1 , Y0 , andY1 :

D~u,a!5@uJ0~u!2aJ1~u!#21@uY0~u!2aY1~u!#2.
~2!

In the case of the constant currentI , the power changes
linearly with the temperature due to an increasing resistance
R of the wire:

q~ t !5I 2R~ t !5I 2R0$11b@T~ t !2T0#%

5q01q1~T2T0!. ~3!

It can be shown that the temperature variations in this case
are described by an expression similar to~1!, but with q0

instead ofq in the factor multiplying the integral, and withD
replaced byDh :

Dh~u,a!5FuS 11
q1r 2

Sau2D J0~u!2aJ1~u!G2

1FuS 11
q1r 2

Sau2DY0~u!2aY1~u!G2

. ~4!

The asymptotic expansion of~1!, valid for large t (at/r 2

@1), reads

T2T05
q

4pl
@20.57721 ln ~4at/r 2!#, ~5!

and allows us to directly determinel from the slope of
T(ln t). This approach is commonly used to evaluate experi-
mental data~e.g., Refs. 1 and 4!. In general, however, and
especially fort<a/r 2, the exact formula~1! with ~2! or ~4!
should be used.

There are three unknown parameters in~1!; l, rc, and
T0 . We introduce a new set of unknowns;

x15
l

l ref
, x25

a

a ref
, x35T0 , ~6!

by normalizingl and a to their reference valuesl ref and
a ref .

The expected results of an ideal temperature measure-
ment att i are then equal to:

Ti
c5Tc~ t i ;x1 ,x2 ,x3!

5x31
2qa ref

2 x2
2

p3l refx1

3E
0

` 12exp~22l refrwcwtu2x1 /r 2a refx2!

u3D~u,x1 ,x2!
du. ~7!

A time sequence of real measurementsTi
o, i 51,...,N can

now be compared with correspondingTi
c in order to find the

values ofx1 ,x2 ,x3 that give the minimum of the sum of
squared residuals:

L5L~x1 ,x2 ,x3!5(
i 51

N

@Ti
02Ti

c~x1 ,x2 ,x3!#2. ~8!

SinceTi
c is a nonlinear function ofx1 ,x2 we will find the

minimum of L by applying an optimization method. Once
the optimalx1 ,x2 ,x3 are known, it is straightforward to ob-
tain l, a, and T0 from ~6!. Our method of data evaluation
differs in many respects from that employed by Ha˚kansson

FIG. 1. Upper panel: The data~diamonds! and the optimal fit~solid line!
obtained for the teflon data set T18~constant current!. Lower panel: The
difference~residuum! between the temperature calculated according to~1!
and observed temperature for the same data set.
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et al.6 First of all, we use a specialized optimization routine
E04LBF from the Numerical Algorithms Group~NAG! li-
brary. At each step of optimization, expression~7!, as well as
its first and second partial derivatives with respect tox1 and
x2 , are calculated explicitly by an adaptive Gaussian quadra-
ture with an accuracy of 1028. The average CPU time of
processing one data set is about 1 min on a PC-486.

III. RESULTS

The measurements have been performed for different
materials ~compact and granular! in various experimental
conditions~pressure, temperature!. The details of experimen-
tal setup and data acquisition have been explained by Seif-
erlin et al.4 In short, the thermal probe comprises a thin~ra-
dius 1 mm! hollow aluminum cylinder with a copper wire
~radius 0.03 mm! tightly coiled around it. The wire serves, at
the same time, as a heat source and a resistance-type tem-
perature sensor.

We describe first the results for teflon, which can be
considered as a reference material with well known and

stable values of thermal conductivity and thermal
diffusivity.11 Next, we present the measurements and their
interpretation for a granular material, dunite. Finally, we
show the results for compact and porous ice. The experi-
ments with dunite and the ices have been carried out in the
constant power mode. The exact formula for the constant
current method has been derived later and checked on the
teflon data.

The issues of particular interest are;~i! the thermal pa-
rameter determination from the exact formula~1! as com-
pared with the asymptotic expression~5!, ~ii ! the dependence
of the parameter values on the data subinterval used, and~iii !
the comparison of the constant power and the constant cur-
rent methods.

A. Teflon

The measurements have been made in normal condi-
tions, i.e., at room temperature and atmospheric pressure.
The sensor has been immersed into a hole drilled in a teflon
block. To ensure a good thermal contact between the sensor

TABLE I. Teflon.

Data seta No. of points
Subinterval

~points!
l

~W/mK!
a

(m2/s)
T0

~C!
Average

residuum~K!
lasm

b

~W/mK!

T18 144 1–144 0.242 1.36E-7 21.64 0.057 0.242–0.237
T10 144 1–144 0.245 1.68E-7 22.65 0.082 0.258–0.243
T20 144 1–144 0.248 1.77E-7 22.71 0.062 0.249–0.243
T21 144 1–144 0.247 1.74E-7 23.28 0.053 0.255–0.240
T22 160 1–160 0.247 1.75E-7 22.77 0.052 0.245–0.239
T23 160 1–160 0.249 1.97E-7 20.78 0.060 0.248–0.240
T24 160 1–160 0.248 1.94E-7 21.49 0.058 0.248–0.240
T25 144 1–144 0.243 1.80E-7 22.09 0.074 0.243–0.237
T26 144 1–144 0.262 2.38E-7 31.01 0.089 0.282–0.252
T28 144 1–144 0.251 1.56E-7 21.88 0.046 0.256–0.251
T29 144 1–144 0.251 2.32E-7 21.94 0.058 0.258–0.249
T30 144 1–144 0.252 1.85E-7 21.83 0.044 0.247–0.243
T31 144 1–144 0.249 2.15E-7 21.93 0.065

T18 30 21–50 0.228 0.86E-7 22.25 0.021
T19 30 21–50 0.258 1.82E-7 22.90 0.032
T20 30 21–50 0.236 1.14E-7 23.35 0.026
T21 30 21–50 0.255 1.70E-7 23.52 0.026
T22 30 21–50 0.262 2.02E-7 22.91 0.024
T23 30 21–50 0.242 1.37E-7 21.36 0.021
T24 30 21–50 0.243 1.48E-7 21.91 0.026
T28 30 21–50 0.244 1.12E-7 22.26 0.020
T29 30 21–50 0.223 0.98E-7 22.86 0.024
T30 30 21–50 0.215 0.69E-7 22.51 0.017
T31 30 21–50 0.265 2.45E-7 22.13 0.025

T18 72 37–108 0.237 1.18E-7 21.80 0.016
T19 72 37–108 0.237 1.28E-7 23.09 0.026
T20 72 37–108 0.244 1.59E-7 22.79 0.025
T21 72 37–108 0.241 1.43E-7 23.48 0.016
T22 80 41–108 0.247 1.91E-7 22.47 0.022
T23 80 41–108 0.247 2.27E-7 20.27 0.021
T24 80 41–108 0.241 1.49E-7 21.84 0.016
T28 72 37–108 0.255 2.27E-7 21.18 0.027
T29 72 37–108 0.250 2.48E-7 21.67 0.017
T30 72 37–108 0.253 2.46E-7 21.33 0.024
T31 72 37–108 0.246 1.96E-7 21.98 0.022

aData sets T24 and T25 correspond to the constant power mode, the remaining ones to the constant current
mode.

blasm is obtained from formula~5! using the running-box five-point linear approximation of measurements.
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and the medium, the free space~approximately 0.5–1 mm
gap! in the hole has been filled with pump oil, which can be
considered as a perfect conductor~due to the convection ef-
fect, see Ref. 9!. Both the constant power and the constant

current methods have been tested. A typical run for a con-
stant current of 175 mA is presented in Fig. 1. The solid line
in the upper panel corresponds to the best fit values of ther-
mal parameters. The scatter of residuals~i.e.,Ti

c–Ti
0! that are

presented in the lower panel indicate that the systematic
~model! errors are rather small. The larger residuals in the
initial part of the data are due to a limited resolution of the
analog-to-digital~ADI ! converter. The amplitude of residuals
is larger for the constant power than for the constant current,
which follows from inaccuracy in stabilizing the power. The
thermal conductivity and diffusivity obtained from process-
ing the data from several measurements are presented in
Table I. In the second part of this table the values obtained
from different subintervals of the whole data sets are shown.
The nominal values given by Grigull and Sandner11 are l
50.23 and a5131027; Goodfellow, a company which
sells all sorts of materials and specimens, givesl50.25 in
their 1995/1996 catalogue. It is evident that the accuracy of
the thermal conductivity determination is quite good even for
the early part of the data set (t<tasm5r 2/a). Thermal diffu-
sivity, on the other hand, shows much larger scatter for
smaller subintervals as compared with the values derived
from all data points. Applying the standard estimators of the
expected value and its variance to the constant current results
and the whole data sets, we obtainl50.246 W/m K, Dl
50.0035 W/m K, a50.18331026 m2/s, and Da50.025
31026 m2/s. The values for a 30-point subinterval~points
21 to 50 of each data set! corresponding to 9,t,50 s are
l50.243 W/m K, Dl50.015 W/m K, a50.142

FIG. 2. Thermal conductivity~upper panel! and thermal diffusivity~lower
panel! of teflon as determined from 30 data points centered at the point
number given by the abscissa. The curves correspond to the following data
sets: T18~1!, T20 ~* !, and T24~L!.

TABLE II. Dunite.

Data seta No. of points
Subinterval

~points!
l

~W/mK!
a

(m2/s)
T0

~C!
Average

residuum~K!
lasm

b

~W/mK!

DU11 50 1–50 0.283 7.08E-7 29.26 0.141 0.278–0.258
DU14 50 1–50 0.0547 1.29E-7 48.71 0.346 0.058–0.049
DU15 50 1–50 0.0547 0.74E-7 27.17 0.183 0.056
DU18 49 2–50 0.0376 0.49E-7 40.94 0.231 0.037
DU19 50 1–50 0.0350 0.42E-7 44.08 0.282 0.037
DU20 50 1–50 0.0336 0.43E-7 43.09 0.317 0.036
DU21 50 1–50 0.0345 0.39E-7 39.02 0.212 0.038
DU22 50 1–50 0.0502 0.74E-7 42.44 0.198 0.053–0.051

DU11 15 11–25 0.312 9.53E-7 29.32 0.101
DU14 15 11–25 0.0392 0.41E-7 48.90 0.130
DU15 15 11–25 0.0560 0.94E-7 26.62 0.105
DU18 15 11–25 0.0458 1.18E-7 40.08 0.140
DU19 15 11–25 0.0328 0.34E-7 43.93 0.137
DU20 15 11–25 0.0217 0.12E-7 43.22 0.112
DU21 15 11–25 0.0251 0.16E-7 39.07 0.149
DU22 15 11–25 0.0564 2.01E-7 41.90 0.197

DU11 27 11–37 0.245 2.30E-7 29.62 0.113
DU14 27 11–37 0.0525 1.31E-7 48.06 0.165
DU15 27 11–37 0.0589 1.14E-7 26.51 0.110
DU18 27 11–37 0.0388 0.63E-7 40.35 0.163
DU19 27 11–37 0.0279 0.21E-7 44.05 0.139
DU20 27 11–37 0.0277 0.25E-7 42.94 0.118
DU21 27 11–37 0.0320 0.32E-7 38.85 0.140
DU22 27 11–37 0.0490 0.74E-7 42.25 0.190

aAll data sets measured in the constant power mode, at different pressures: GDU112105 Pa,
GDU142131022–731022 Pa, GDU152431021 Pa, GDU1824.231023 Pa, GDU192431023 Pa,
GDU202131022 Pa, GDU212531022 Pa, and GDU222131021 Pa.

blasm is obtained from formula~5! using the running-box five-point linear approximation of measurements.
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31026 m2/s, and Da50.05131026 m2/s. Finally, taking
the subinterval in the middle of the set that consists of about
half of the total points in the whole interval, one getsl
50.245 W/m K, Dl50.0057 W/m K, a50.185
31026 m2/s, andDa50.04531026 m2/s. For the measure-
ments in the whole interval, the obtained values of the ther-
mal conductivity and thermal diffusivity are larger by more
than one standard deviation from their nominal values given
by Grigull and Sandner.11 This effect may be explained by
the systematic error caused by the conducting layer~oil!
placed between the sensor and the medium@which is not
taken into account in formulae~1! or ~3!#. Therefore, in the
following we will concentrate on the consistency of data
rather than on their close agreement with the reference val-
ues.

It is interesting that if one shifts a 30-point subinterval,
from which the data are processed, through the whole data

set, then the thermal parameters determined at the beginning
and at the end of the whole set are quite similar. There are,
however, differences for the middle part~Fig. 2!. We explain
this effect by some small systematic effects not taken into
account in the model: the thermal resistance between the
probe and the medium, for example. It is somehow amplified
and apparently shows only in a certain part of the measure-
ments.

The asymptotic formula~5! was used to approximate
sets of five consecutive measurement points by straight lines
and derivel ~the running-box five-point linear approxima-
tion!. The values obtained in that way are similar, though
slightly larger than those found in the nonlinear fit.

Finally, we checked how the inaccuracies in parameters
that enter formula~1! but are not optimized, such asrwcw

and r , could affect the results. It appeared that even for a
30% change in any of them the thermal conductivity does
not vary by more than 1%. The thermal diffusivity value is
insensitive to changes inrwcw but vary approximately as
1/r 2 with the radius of the heating rod.

B. Dunite

The thermal conductivity of this mineral powder has
been measured in a vacuum recipient at room temperature at
different pressures, ranging from 1023 to 105 Pa ~Ref. 4!.
All measurements have been done in the constant power
mode. Table II contains the parameters determined in differ-
ent subintervals for several data sets. There is an obvious
difference with respect to the teflon measurements; the dun-
ite parameters strongly depend on the subinterval. The values
obtained from the last subinterval~points 38–50! are, in gen-
eral, consistent with the values derived from the whole set.
Also, the parameters found from the fit in the middle sub-
interval ~points 12–38! are reasonably close to those ob-
tained from fitting to all points. The effect can be, in part,
explained by~i! employing the less accurate constant power
method, and~ii ! using the smaller number of points in the
fitting process than for teflon. Even though the parameters
obtained from small subintervals are, on the average, deter-
mined with large errors~which is indicated by a large scatter
of their values!, there are data sets~Fig. 3! which give con-
sistent results for all subintervals.

From the thermal conductivity and thermal diffusivity

FIG. 3. The same as Fig. 2, but for the dunite data sets: DU15 withT0

determined independently for each subinterval~1!, DU15 with the sameT0

for all subintervals~* !, DU24 with T0 determined independently~L!, and
DU24 with the sameT0 ~n!. Note that DU15 and DU24 have been obtained
at different pressures and, therefore, should give different values for the
thermal conductivity.

TABLE III. Compact ice.

Data seta No. of points
Subinterval

~points!
l

~W/mK!
a

(m2/s)
T0

~C!
Average

residuum~K!
lasm

b

~W/mK!

CI02 50 1–50 5.92 3.23E-5 2199.93 0.110 8.1–5.7
CI03 50 1–50 5.24 2.86E-5 2200.10 0.095 7.5–5.0
CI04 50 1–50 5.66 3.08E-5 2199.88 0.098 8.5–4.0
CI08 49 2–50 1.96 2.23E-6 267.63 0.084 2.1
CI09 50 1–50 2.08 1.07E-5 267.08 0.071 2.15
CI10 50 1–50 2.20 1.20E-5 266.62 0.088 2.15
CI29 50 1–50 2.15 1.17E-5 225.78 0.128 2.5
CI30 50 1–50 2.31 1.26E-5 224.66 0.202
CI31 50 1–50 2.29 1.25E-5 224.83 0.192 2.3

aAll data sets measured in the constant power mode.
blasm is obtained from formula~5! using the running-box five-point linear approximation of measurements.
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one can determine the productrc which should not depend
on the pressure. This parameter, when determined from the
whole intervals of 12 data sets, is in the range 5.5– 8.5
3105 J/m3 K.

C. Compact ice

The sensor was slowly frozen into the ice: it was fixed in
its final position within the sample container, which was
cooled by liquid nitrogen. Shallow layers of water have been
poured into the sample container, freezing and thus forming
a solid ice block with layering in thez direction. Thermal
cracks, which formed close to the sensor, and small pores did
not ensure a good contact between the ice and the sensor.
Therefore, one might expect a substantial thermal resistance
which could modify the value of thermal conductivity. The
ice temperature was varied from 73 to 250 K. The pressure
was atmospheric. The difference between the temperature
profiles for the compact ice on one side and granular mate-
rials on the other~Fig. 1! is that the ice curve is approxi-
mately a straight line with only a trace of curvature. This
shape of the temperature function results from a high thermal
conductivity of ice, which is an order of magnitude larger
than that for the granulates~e.g., dunite!. As a consequence,
the temperature profile of ice reaches the asymptotic region
in much shorter time. Since the thermal diffusivity can be at
best determined from the initial, nonasymptotic part of the
profile, which in the case of compact ice is almost absent,
one can expect that the determination ofa will be difficult.
Indeed, the scatter of diffusivity values obtained from differ-
ent data sets or different subintervals within one set shows
that the reliable value ofa can only be obtained for particular
data sets, for which the systematic errors are small and the
temperature is measured with high accuracy~Table III, Fig.
4!. The thermal conductivity should follow the dependence

567/T@K#W/m K ~Ref. 12!. The values obtained by us are
smaller by about 20%, which can be explained by the instru-
mental effects mentioned earlier~cracks in the sample, poor
thermal contact!.

In all runs of the optimization code the obtained values
of a andT0 were strongly correlated, but almost independent
of l. In such a case, one can approach the problem of ther-
mal diffusivity determination from another side: first to de-
termine aT0 value from the initial part of the temperature
profile and then to process the following subintervals, opti-
mizing ~5! with respect to only two parametersl anda. This
method gives much more consistent values ofa ~Table III!.

D. Porous ice

Since porous ice is characterized by a high sticking co-
efficient, the thermal contact between the sensor and the
sample is similar to the thermal contact within the ice~5%!,
contrary to the case of compact ice, where the contact area is
almost 100% within the ice but is reduced to about 80% at
the sensor–medium interface. Thermal conductivity of po-
rous materials is low and the measured temperature profile
does not reach the asymptotic range even fort51000 s~Fig.
5!. For the thermal conductivity we getl50.004 16 W/m K,
which, at T5137 K and at the low pressure applied
(,1023 Pa), corresponds to the Hertz factorb50.001. The
determined value ofa should be about 7.531028 m2/s, if we
substituterc of ice with a porosity 0.5.11 In fact, we have
obtained a57.831028 m2/s, which is a rather fortunate
agreement taking into account large errors of single measure-
ments~Fig. 5, lower panel!. Interestingly enough, this diffu-
sivity value can only be obtained from optimization in the
whole interval, or, in the second half of it. Any attempt to
reproduce this value from processing the initial part of the
data fails.

FIG. 4. The same as Fig. 2, but for the compact ice data sets: CI31~1!,
CI02 ~* !, and CI10~L!. In all casesT0 was determined independently in
each subinterval.

FIG. 5. The same as Fig. 1, but for the porous ice data set PI03~constant
power!.
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IV. DISCUSSION

We have applied a new algorithm of thermal conductiv-
ity and thermal diffusivity determination from the hot-wire
transient temperature measurements in solids. The method
evaluates the data from the arbitrary measurement interval,
contrary to the commonly used approach, in which only the
data from the asymptotic interval (t.tasm) are processed in
order to derive the thermal conductivity value. An interesting
extension of the constant power formula for the temperature
variations allows us to interpret the data obtained in the con-
stant current mode.

In general, the thermal conductivity determination from
the whole data interval gives a very similar value to that
obtained from the asymptotic formula, but has an advantage
of employing more data points which results in a better ac-
curacy ~smaller errors! of l. It is also possible to derive a
reliable value of thermal conductivity from the initial, non-
asymptotic part of the measurements. Theoretically, the qual-
ity of the fit, for the comparable number of points, should be
the same as from the asymptotic part of the data. In the case
of our measurements, however, it is difficult to directly com-
pare the accuracy of bothl determinations because of~i! a
better resolution of temperature data in the asymptotic inter-
val, and~ii ! small systematic errors in data due to neglecting
the thermal resistance between the probe and the medium.

The new method gives a possibility of obtaining another
parameter of the medium from the data fit: the thermal dif-
fusivity. Since the optimized function is much less sensitive
to the thermal diffusivity than to the thermal conductivity the
determination of the former parameter is, however, difficult,
and requires a high accuracy of temperature measurements.
Indeed, when the thermal diffusivity is determined from the
constant current runs, which due to technical reasons are
definitely better than the constant power data, the values ofa
are more consistent. In the best cases the estimated error ofa
is about 15%, while the corresponding error for the thermal
conductivity amounts to a few percent. The errors can be
made smaller if the accuracy of a single temperature mea-
surement is increased. A 0.01 K accuracy of temperature
data should guarantee the thermal diffusivity determination
with an error of about 5%.

The presented method has a number of advantages in
space applications. First, when the constant current mode is
used, the instrument electronics can be simpler and the sta-
bility of the input parameter~current! is better controlled.
Second, the duration of the measurement interval can be sig-
nificantly reduced without the loss of accuracy of the deter-
mined parameters. Such shortening will result in smaller av-
erage power consumption~first 50% of the total data points

correspond to 10%–15% of the total duration and energy
needed! or/and a possibility of more frequent repetition of
the measurement cycle. Third, the method can give an esti-
mate of the thermal diffusivity without introducing any inde-
pendent measurements.

The development of the described technique can proceed
in two directions. On the technical side, it would be desirable
to measure the temperature more accurately in a shorter time
interval. Fortunately, this does not put any additional re-
quirement on the resolution of the analog–digital converter
used. As for the algorithm of the data processing, it should
be generalized to include the case of a poor thermal contact
between the sensor and the surrounding environment, ther-
mal properties of which are going to be measured. Such an
improvement is possible, but it will introduce a new optimi-
zation parameter—the thermal resistance.9 On one hand the
algorithm will become more complicated, on the other it will
allow us to get new information about the medium; thermal
resistance can be interpreted in terms of its porosity, Hertz
factor, number of cracks per unit volume, etc., provided that
the contact area between the sensor and the medium is typi-
cal for the medium itself. At last, one can try to apply a
recently developed multicurrent method, in which the hot-
wire measurements are repeated with different current inten-
sities, in order to simultaneously determine the thermal con-
ductivity and thermal diffusivity from the asymptotic
formula ~3!.
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