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Abstract The transient plane source method of measuring the thermal conductivity
and thermal diffusivity uses a sensor in the shape of a thin disk, which simultaneously
serves as the heat source and thermometer. This study describes improvements of the
experimental apparatus, providing some details of the electrical bridge with the aim
to obtain maximum reliability of the measurement results. The aim of the temperature
function analysis is to find the optimal time of measurement. The relation between the
data time window used for fitting, the uncertainty of the sensor temperature measure-
ment, and the uncertainty of the results is presented and graphically illustrated using
numerical simulation of the experiment. The theory was confirmed by the evaluation
of real measurements on polymethylmetacrylate. The temperature function analysis
revealed that a decrease of the temperature measurement uncertainty need not always
lead to a fall in the total uncertainty of the results but to shorter experiments and
smaller specimens.

Keywords Polymethylmetacrylate · Temperature function analysis ·
Thermal conductivity · Thermal diffusivity · Transient plane source method

1 Introduction

Transient methods [1] for measuring the thermophysical properties of materials are
characterized by the heat source and thermometer placed inside the specimen. This
arrangement suppresses the influence of the specimen surface on the measuring
process. The theoretical model is described by a temperature function, which is a
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solution of the heat equation with boundary and initial conditions corresponding to
the experimental arrangement. The experiment consists of measuring the temperature
response to the input heat flux with a steady-state initial condition. The evaluation is
based on determining the thermal conductivity and thermal diffusivity by fitting the
temperature function to the temperature response.

The transient plane source [2] (TPS) method uses a one-sensor system, where the
heat source simultaneously serves as the thermometer. The sensor, in the shape of
a thin disk, is placed between two sample pieces. Heat is produced by the passage
of an electrical current, in the form of a stepwise function, through the sensor, the
temperature of which is determined by measuring its electrical resistance. The sensor
is completely surrounded by the specimen, and in the time window used for calculation,
the heat flow must not reach the free surface of the specimen.

The aim of this study is to improve the experimental arrangement and analyze the
influence of the temperature measurement uncertainty and the data time window used
for calculation on the uncertainty of determination of the thermophysical parameters
of the specimen.

2 Theoretical Model

The theoretical model of the TPS method is created by the following conditions:

(i) The sensor consists of concentric and equally spaced circular line sources.
(ii) The thickness and heat capacity of the sensor are negligible.

(iii) There is no thermal resistance between the sensor and specimen.
(iv) The specimen is infinite in all directions.
(v) The input power in the sensor is stepwise.

The mean temperature increase of the sensor (temperature function) is given by [2]

T (τ ) = P

π3/2rλ
Dn(τ ), (1)

where P is the input heat power, r is the radius of the sensor, τ = √
t/θ, θ = r2/a is

the characteristic time, and t is the real time of the experiment. λ and a are the thermal
conductivity and thermal diffusivity of the specimen, respectively. The shape function
has the form,

Dn(τ ) = [n(n + 1)]−2
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where n is the number of circular line sources and I0 is the modified Bessel function.
For a very large number of rings, the shape function tends toward
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The numerical calculation of Dn(τ ) and D∞(τ ) is not possible for τ < 0.03 [3], so it
is necessary to estimate the shape functions in this interval by a polynomial as

D(τ ) = A + Bτ + Cτ 2. (4)

For t → 0 the model corresponds to one-dimensional heat flow into an infinite medium
[4] with the following temperature function:

T (τ ) = q

λ

√
at

π
= P

π3/2rλ
τ, (5)

where q is the power per unit area dissipated by the sensor. Connecting Eqs. 1, 4,
and 5, we have A = 0 and B = 1. The last coefficient C = −0.570 is estimated by
comparing the first derivative of Eqs. 3 and 4 at point τ = 0.03.

3 Experiment

The increase of the sensor resistance should be measured by using a digital voltmeter
and a bridge as described in [5]. In this paper a new experimental arrangement for
measurement at the laboratory temperature is designed, which removed some sources
of the measurement uncertainty of the bridge in [5]. It is based on a two-channel
nanovoltmeter (Keithley 2182A) as illustrated in Fig. 1. The main advantage of the
circuit lies in two modes of measurement, which increases the reliability of the results.
In a comparative mode the voltmeter simultaneously measures the voltages U1 and
U2. This mode suppresses the influence of the constant voltage source instability and
eliminates the resistance of the sensor leads from the calculation. Then the sensor
resistance is determined from the following formula:

R = Rc
U1

U2
, (6)

where Rc is the constant power resistor. In the bridge mode the voltmeter measures
the voltage across the bridge u1 during the transient and, afterward, it measures the
voltage of the source u2 before the heating current is turned off. This mode enables
use of the lowest voltage range, which will result in better measurement accuracy. A
single-channel measurement enables a higher sampling frequency and, consequently,
measurements on materials with a high thermal diffusivity. The sensor resistance can
be calculated as follows:

Ua = u2
Ra

Ra + Rb
Ub = u2 − Ua R = (Rc + Rl)

Ua + u1

Ub − u1
− Rl , (7)

where Ra, Rb, Rc are constant resistors and Rl is the resistance of one sensor lead.
The other advantages of the bridge in Fig. 1 are as follows.

1. Measuring at the laboratory temperature only, the resistance of the sensor changes
less than 3 %. So the value of the constant resistor Rc can be set close to the sensor
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Fig. 1 Bridge for sensor resistance R measurement using two-channel nanovoltmeter. U1, U2 are measured
voltages in comparative mode and u1, u2 are measured voltages in bridge mode. S is the switch for starting
the experiment

resistance R. This is necessary for keeping the power input constant during the
measurement [5].

2. The instability introduced by the potentiometer is removed by replacing it with
two constant resistors.

3. There is no need to balance the bridge, which is still slightly unbalanced,
R ≈ Rc, Ra ≈ Rb, keeping the voltage across the bridge u1 within the lowest
range, 10 mV.

4. The resistance of the sensor R is measured, not only its increase as in [5]. This
provides more information of the experiment.

5. The sensor leads are placed into adjacent arms of the bridge, which will suppress
changes of the leads’ resistance caused by variations in temperature.

6. Inserting the series resistor Rs ≈ 200R enables measurement of the sensor resis-
tance before the heating current is turned on. The heating effect is negligible but
the steady state can be monitored before the start of the experiment. A sensor
temperature stability better than 1 mK over an interval of 60 s was reached.

In [5], the probing depth is defined as a measure of how far into the specimen the
heat flows during the time window used for calculation and is given by

p = 2
√

atmax = 2r

√
tmax

θ
, (8)

where tmax is the maximum time of this window. The specimen size can be determined
using recommendation 6.1.3 in [5] which says that the distance x from any part of the
sensor to any part of the outside boundary of the specimen should be larger than
the sensor radius. And an increase in this distance beyond the size of the specimen
diameter does not improve the accuracy of the results. This can be expressed as

r < x < 2r, (9)

and considering Eq. 8, we have the condition for duration of the measurement as

θ

4
< tmax < θ (10)
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The estimates of the thermophysical parameters a and λ are determined by fitting
predicted values of the sensor resistance given by

R(t) = R0 + α R0 P

π3/2rλ
Dn

(√
a (t − tc)

r

)
(11)

to the measured points [ti , Ri ]. α is the temperature coefficient of resistivity of the
sensor (Ni), P is the input heat power, r is the radius of the sensor, and Dn is the shape
function defined by Eq. 2. The thermal diffusivity a and time correction tc [5] will be
iterated until the correlation coefficient of the dependence Ri versus Dn(ti ) reaches
its maximum. Finally, R0 is determined from the intercept and λ from the slope of this
line.

4 Temperature Function Analysis

Assume the temperature function in Eq. 1 is of a known analytical form,

T (t, �α) = T (t, α1, α2, . . . αp), (12)

where the time t is a variable and �α is a vector of unknown parameters. The sensitivity
coefficient defined by [6]

β j (t, �α) = α j
∂T (t, �α)

∂α j
(13)

is a measure of the change in the temperature function due to the variation of the
estimated parameter. The sensitivity coefficients should be analyzed because it is
not possible to determine the parameters if their sensitivity coefficients are small or
linearly dependent on each other. However, it is difficult to judge the linear dependence
and such an analysis has only a qualitative nature. The quantitative access to this
problem involves determination of the uncertainty of the thermophysical parameter
estimates. In this analysis, no deviations between the experiment and theoretical model
are considered. The temperature measurement uncertainty is assumed to be the only
source of uncertainty of the results. Then the standard uncertainty of the least-squares
estimate of the parameter α j is given by [7–9]

u2(α j ) =
{
(XT ·X)−1

}
j j

u2(T ) = A2(α j ) u2(T ), (14)

where u(T ) is the standard uncertainty of the temperature measurement and X is the
sensitivity matrix defined by

{Xi j } = ∂T (ti , �a)

∂α j
(15)
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According to Eq. 14, the uncertainty of the parameter estimates consists of two com-
ponents. The first, here referred to as the uncertainty coefficient A(α j ), is given by the
temperature function and selection of measured points. The second is the temperature
measurement uncertainty. So we have a simple relation between the data time window,
connected with the duration of the measurement, and the uncertainty of the results. It
should be emphasized that the uncertainties in this analysis do not include any sys-
tematic effects and the temperature measurement uncertainty caused by random noise
can be determined as the standard deviation of residuals.

The aim of the following analysis consists in determining the time window nec-
essary for obtaining the required value of the thermophysical parameter uncertainty.
The easiest way is via numerical simulation of the experiment. We take the parameters
of the polymeric material λ = 0.2 W · m−1 · K−1, a = 0.1 mm2 · s−1, sensor radius
r = 6.4 mm, and heating power P = 0.02 W, which causes a temperature increase of
about 1.5 K. We use the temperature function,

T (t) = T0 + P

π3/2rλ
D∞

(√
a (t − tc)

r

)
(16)

and compute the coefficients A(α j ) from Eq. 14 for a sampling period Δ = 0.4 s
and a total number of samples of 1000. The time window used for calculation will
be (tb, tb + ts), where tb = 20 s represents the deviating points at the beginning of
the experiment [5] and ts is the size of the window. T0 and tc are nuisance unknown
parameters. The first corresponds to the initial sensor temperature plus the increase in
temperature over the insulating layers of the sensor, and the second to the small time
delay between the start of the input heat power and the start of the voltmeter sampling.
The relative standard uncertainty of the parameter estimate can be determined from

u+(α j ) = u(α j )

α j
= A(α j )

α j
u(T ) = A+(α j )u(T ), (17)

where A+(α j ) is the relative value of the uncertainty coefficient. Figure 2 shows the
results of numerical simulation. The computed relative coefficients are plotted on a
logarithmic scale against the size of the time window ts in nondimensional scale. A+

3 is
the coefficient computed with three unknown parameters a, λ, and T0 while the time
correction tc is set to zero. A+

4 is the coefficient computed with all four parameters as
unknowns. The decrease of all four curves in Fig. 2 can be interpreted as the larger is
the time of measurement, the smaller is the uncertainty of the results. We can also see
that the uncertainty of parameter a will be considerably larger than that of parameter
λ, and more unknown parameters will cause a larger uncertainty of the results.

Figure 3 illustrates the influence of the experimental parameters on the measurement
results. Curve (a) corresponds to the original parameters, P = 0.02 W, tb = 20 s, and
Δ = 0.4 s. Each of other curves was computed with one of the parameters changed
to half of its original value. All curves seem to have the same shape shifted in the
ordinate direction. As expected, the influence of the amount of the data omitted at the
beginning of the transient tb and the square root of the sampling period Δ are directly
proportional while the influence of the heating power P is inversely proportional.
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Fig. 2 Relative uncertainty coefficients of the parameters a andλ, computed for 3 and 4 unknown parameters
versus the size of the time window ts in nondimensional scale

Fig. 3 Relative coefficient A+
4 (a) versus the size of the time window ts in nondimensional scale for various

parameters of the experiment: (a) as in Fig. 2, (b) P = 0.01 W, (c) tb = 10 s, and (d) Δ = 0.2 s

5 Results and Discussion

The measurements were performed at the laboratory temperature by using the sensor
Hot Disk AB Type 5501 with a number of rings of 16, a radius of 6.4 mm, a resistance of
about 13 
, and a temperature coefficient of resistivity of 0.0048 K−1. The specimens
made from polymethylmetacrylate (PMMA) had a cylindrical shape with a diameter
of 30 mm and a thickness of 9 mm. The characteristic time θ = 350 s and tmax >

θ/4 = 88 s; so, the time of the measurement was set to 120 s which means 300 samples
with a sampling period Δ = 0.4 s. The measurements were performed in both bridge
and comparative modes. The standard deviation of residuals and the beginning of the
time window used for calculation tb were determined from the time dependence of
the residuals as illustrated in Fig. 4 and presented in Table 1.

The previous two experiments were used to verify the theory described in Sect. 4.
The procedure is illustrated in Table 1. First, the relative coefficient A+

4 is determined
using Eq. 17 for a required value of 1 % of the relative uncertainty of the parameter a.
This value can be regarded as the reasonable lower limit for thermophysical parameter
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Fig. 4 Time dependence of residuals measured in bridge mode with heating power of 20 mW

Table 1 Measurement evaluation using the time window designed for 1 % uncertainty of the results

Mode u(T ) (mK) A+
4 (a) (K−1) tb(s) ts

θ
ts(s) λ(W · m−1 · K−1) a(mm2 · s−1)

Bridge 0.016 630 20 0.09 30 0.205 0.121

Comparative 0.20 50 10 0.2 68 0.205 0.124

Table 2 Results of the
measurements on PMMA using
all measured data

λ(W · m−1 · K−1) a(mm2 · s−1)

Arithmetic mean 0.206 0.122

Standard deviation 0.001 0.002

Coefficient of variation 0.5 % 1.6 %

measurements considering the other sources of uncertainty, above all, the deviations
between the model and experiment. Second, the size of the window is determined as
seen in Fig. 3, for the bridge mode marked as dashed line and for the comparative mode
marked as dashed–dotted line. Finally, both thermophysical parameters are computed
by fitting in this time window.

Table 2 shows the results of 20 measurements made in comparative and bridge
modes with the heating power set to values from 20 mW to 100 mW at a laboratory
temperature from 20 ◦C to 23 ◦C. The apparatus was disassembled and reassembled
before each measurement. All measured data were used for fitting, so tb + ts = 120 s.
The results of thermophysical parameters in Tables 1 and 2 are equivalent; so, we
showed that the time windows determined in Table 1 are sufficient for calculation
of the parameters. The real uncertainty of the results will be higher than the values
in Table 2 because of the deviations between the model and experiment and other
systematic errors. However, an increase in the time of measurement does not improve
the total uncertainty of the results and measuring beyond the values presented in Table 1
is a waste of time and specimen material.

6 Summary

The first part of this study describes improvements of the experimental apparatus giv-
ing some details of the electrical bridge with the aim to obtain maximum reliability
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of the measurement results. The second is devoted to temperature function analysis
and to finding the optimal time of measurement. The relation between the data time
window used for fitting, the uncertainty of the sensor temperature measurement, and
the uncertainty of the results was presented and graphically illustrated. In real mea-
surements on PMMA, temperature function analysis was used to determine the time
window required for a relative uncertainty of the results better than 1 %. Finally, we
showed that this window was sufficient for estimation of thermophysical parameters.

The improvements in the instrument caused a decrease of the temperature mea-
surement uncertainty which need not always lead to a fall in the total uncertainty of
the results because of the other sources. However, the temperature function analysis
showed that it leads to the use of a smaller time window resulting in a shorter time of
the measurement and smaller specimens.
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