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a b s t r a c t

The hot-disk technique is a very practicable transient method of measurement of the thermal properties
of solid materials. It has been applied successfully to a wide variety of materials. However, it is based on
several approximations regarding the nature of the heat transfer. Notably, the probe is considered
thermally neutral, and the heat transfer is assumed purely conductive. These two assumptions are
questionable when dealing with low-density thermal insulators. In order to evaluate the accuracy of the
method, we have generated numerically noised thermograms reproducing the thermal response that
would be recorded when measurements are applied to those type of materials. Thereafter, the best-
fitting procedure of the classical hot-disk technique was applied to these thermograms. The analysis
of the identification results show that the presence of a radiative contribution do not affect the accuracy
of the thermal properties identified. The conductivity measured actually corresponds to the equivalent
conductivity. On the other hand, when the method is applied to materials with thermal inertia strongly
different from the probe (z2 order of magnitude lower or more), the accuracy of the method becomes
questionable. This is notably the case for common insulators used in the building industry like polymer
foam or mineral wools. The preceding conclusions have been validated by experimental measurements
on a standard low-density XPS foam sample and a superinsulating silica areogel.

� 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

The accuracy of thermal conductivities measurement takes on
particular importance in numerous physical, chemical or medical
applications given that it has a direct influence on the estimation of
heat losses, or temperature rise. The standard measuring method
for the thermal conductivity is the so-called “guarded hot-plate
method”. The principle is to measure the heat flux passing
through a slab of materials subjected to a one dimensional steady
state heat transfer. This technique gives very accurate results.
Nevertheless, it is restricting given that the slab must have large
and standard dimensions and that it requires especially long
measuring durations.

To remedy these drawbacks, experimental methods of
measurement of thermophysical properties based on transient
measurements have been developed during the last two decades.
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As example, the FLASH method [1e3] has been extensively used on
a broad range of materials. The validity of this method for the
estimation of the equivalent thermal conductivity of semi-
transparent foam has been recently demonstrated [4]. Another
common transient method used for the measurement of thermal
conductivity is the so-called hot-wiremethod. It is relatively simple
and fast as it is based on the measurement of the temperature rise
of a uniformly heated wire located inside a sample with any shape
and relatively small size. It has been used in numerous studies
dealing with solid and pasty thermal insulators [5], soil [6] or thin
plates [7] and gives satisfactory results. However, as the method is
based on the Fourier diffusion law, it is theoretically not applicable
to materials where radiative heat transfer occurs and then, it is
restricted to opaque or ideally transparent materials. However,
according to Coquard et al. [8], the method could be generalized to
semi-transparent materials under certain conditions regarding the
dimensions of the apparatus.

More recently, a new transient method called transient plane
source (TPS) technique or “hot-disk” technique has been proposed
for thermal transport studies of solid materials [9,10]. This transient
plane source method is based on the heating of a plane double
resistive spiral sandwiched between two samples of the material to
be characterized. The recording of the mean temperature of the
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Nomenclature

a thermal diffusivity of the material (m2/s)
A constant temperature jump of the probe due to

non-perfect thermal contact (K)
C Specific Heat of the material (J/kg/K)
D distance traveled by the heating during the

measurement time (m)
r0 radius of the hot-disk probe (m)
e total thickness of the hot-disk probe (m)
eNi thickness of the Nickel spiral immersed in the

probe (m)
g spectral asymmetry factor of the phase function
Iðr; z; q;4Þ radiant intensity at the point (r,z) in the direction

ðq;4Þ (W/m2/Sr)
Imi;j radiant intensity at the discrete point (ri,zj) in the

discrete direction m (W/m2/Sr)
I0ðTÞ radiant intensity of the black body at temperature T

(W/m2/Sr)
k thermal conductivity of the material (W/m/K)
kequ “equivalent” conductivity of the material

(W/m/K)
L space interval between hot and cold plates for the

computation of kequ,num (m)
N number of measurement points
No relative amplitude of the noise
PðqÞ scattering phase function
q heat flux density (W/m2)
_Q volumetric heat flux generated in the probe by Joule

effect (W/m3)
Q ¼ U:I heat flux generated in the probe by Joule effect (W)
r radial coordinate (m)
R electrical resistance (U)
Rc thermal contact resistance (m2 K/W)
t time (s)
tc time correction (s)
T temperature (K)
Text temperature of the surrounding environment (K)
V volume (m3)

wm weighting factor for the mth direction of the angular
discretization

z axial coordinate

Greek symbols
b, s and kextinction, scattering and absorption coefficients (m�1)
Dt time increment (s)
DT ¼ T � Text temperature increase (K)
εh, εc, εp emissivity of the hot plate, cold plate and of the probe
U solid angle
l radiation wavelength (mm)
m ¼ sinq:cosf; x ¼ cosq; h ¼ sinq:sin4 direction cosines of the

radiant intensity
r density of the material (kg/m3)
sSB StefaneBoltzmann constant (z5.67.10�8 W/m2/K4)

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a:t=r20

q
dimensionless time

u ¼ s/b scattering albedo

Subscripts
c conductive
exp experimental
G generated numerically
i,j at the point of coordinates ri,zj
ident identified
Ka Kapton
min, maxminimum, maximum values
Ni Nickel spiral
num numerical
p of the probe
r radiative
t total
th theoretical
l spectral value

Superscripts
l at the lth iteration
m mth direction of the quadrature
r along the radial axis
z along the z-axis
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heating element combined with a parameter estimation method
makes it possible to estimate thermal conductivity and thermal
diffusivity of the samples from a single experiment. The method is
rapid and very practical since no particular shape is required for the
sample tested and the size of this sample is relatively limited. In
addition to its rapidity and ease of use, the main advantage of this
technique is the possibility to determine both the thermal
conductivity and the thermal diffusivity from one single transient
measurement. This technique gave rise to the commercialization of
a “hot disk” thermal constants analyzer generally referred as “hot-
disk”. This probe is, at the moment, extensively used due to its
claimed ability to produce accurate estimations for a large variety of
solids and liquids. The hot-disk analyzer was studied and used by
numerous authors [11e16].

Bohac et al. [11] improved the accuracy of the method by
computing the sensitivity coefficients for the thermal diffusivity
and conductivity. From the analysis of these coefficients, they
proposed optimal timewindow to be used for determining both the
thermal conductivity and the thermal diffusivity. This timewindow
has been validated using experimental results on Perspex and
stainless steel for both the thermal conductivity and the thermal
diffusivity.
Gustavsson and Gustafsson [17] also proposed a modification of
the fitting procedure used in the hot-disk technique in order to
improve the accuracy of the measured thermal properties. It
consists in incorporating two additional model-fitted variables in
the direct model: a constant temperature increase component A
reproducing the total thermal contact resistance and a time
correction tc. By using these two additional parameters, the dis-
turbing influence of the bad thermal contact between the probe
and the material as well as the inertia of the probe are significantly
reduced allowing a better estimation of the thermal conductivity
and diffusivity of the material by the hot-disk measurement.

Recently, Jannot and Acem [15] have developed a complete
model based on the thermal quadrupoles formalism to represent
the hot disc temperature variation taking into account both the
thermal inertia of the probe and possible contact resistance
between the solid to be characterized and the probe. This model
permits them to show that the reliability of the measurements
obtained by the hot-disk technique might be questionable in some
particular cases where (1) the thermal contact resistance or (2) the
thermal inertia of the hot disc, could not be neglected as it is
assumed in the standard analysis. However, it can be noticed that
their model did not take into account the real thermal conductivity
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of the probe and thus, they were not able to quantify the effect of
this deviation from the ideal case.

The studies, discussed just above, which have been interested in
the analysis of the limitations and restrictions in the use of the hot-
disk analyzers are very scarce. This could appear quite surprising
since one of the main strength of the method is precisely its large
field of application (the fields of commercial application claimed by
the manufacturer are 0.005e500 W/m/K for the thermal conduc-
tivity, 0.1 to 100 � 10�6 m2/s for the thermal diffusivity and 30 Ke
1000 K for the temperature). However, in addition to the thermal
influence of the probe and to the possible contact resistance
between the disk and the material, the existence of other modes of
heat transfer along with the thermal conduction might also disturb
the transient plane source measurements and influence the values
of the thermal properties estimated by the fitting procedure. Then,
although the hot-disk method has been largely used with apparent
satisfaction for a wide range of materials and temperatures, there
remain, from a theoretical point of view, some uncertainties about
its applicability and accuracy for low-density materials in which
radiative heat transfer could be significant.

Therefore, the aim of the present study is to estimate the reli-
ability of the hot-disk technique for low-density thermal insulators
for which non-ideal conditions are encountered: (1) thermally non-
neutral probe due to its thermal capacity (rp.Cp s r.C) or thermal
conductivity (kp s k); (2) presence of significant radiative heat
transfer in the material analyzed (semi-transparent material). To
fulfil these objectives, we have developed a numerical model based
on the resolution of the coupled (radiationeconduction) heat
transfer problem around realistic thermally active probes. This
model uses a combination of the Finite Volume Method (FVM) and
the Discrete Ordinates Method (DOM). It has been used to generate
numerically noised thermograms that would be recorded using
existing probes on various low-density semi-transparent insulating
materials with realistic radiative and conductive properties. The
modeling of heat transfer inside the probe has been developed to
take into account as faithfully as possible the composite structure of
existing probes. Thereafter, a least square fit-method associated
with an analytical simulation of the purely conductive heat transfer
around the probe taking into account the constant component A
and the time correction tc has been applied to these thermograms.
It allows evaluating the errors made on the thermal properties of
low-density thermal insulators estimated using the classical hot-
disk fitting procedure. This also permits us to underline and
quantify the critical conditions under which the reliability of the
hot-disk measurements should be questioned for this type of
materials. Thereafter, we conducted a campaign of hot-disk
measurements on various thermal insulators samples which
allowed us to validate the theoretical conclusions.

2. Theoretical considerations

2.1. Principle of the hot disk thermal constants analyzer

The hot disk thermal constants analyzer (HD), manufactured by
hot disk AB, utilizes a sensor element in the shape of a double spiral
which acts both as a heat source for increasing the temperature of
the sample and an “Ohmic resistance thermometer’’ (Wheatstone
bridge) for recording the time-dependent temperature increase.
The spiral, made of nickel covered on both sides with Kapton for
protection and electrical insulation is simply placed between two
halves of the sample tested.

From a theoretical point of view, the increase of the probe
temperature is obtained by solving the conduction equation
assuming that the hot disk consists of n concentric ring heat
sources located in an infinitely large sample. If we also assume that
the thermal contacts are perfect and that hot-disk probe is ther-
mally neutral (thermal properties identical to the material tested),
the time-dependent temperature increase is given by:

DTthðtÞ ¼ Q
p3=2:r0:k

DnðsÞ (1)

With

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a:t=r20

q
;DnðsÞ ¼ ½n:ðnþ 1Þ��2

Zs
0

"
s�2

Xn
l¼1

Xn
k¼1

l:k:exp

�
�
� l2 þ k2

4:n2:sn

�
I0

�
lk

2:n2:sn

�#
:ds

and I0 is the modified Bessel Function of the first kind of order zero.
When performing ameasurement with the hot diskmethod, the

temperature response includes the two additional parameters A
and tc introduced by Gustavsson and Gustafsson [17]. Then, DT is
a sum of two components, one component which is essentially
constant (A) and the transient component:

DTthðtÞ ¼ Aþ Q
p3=2:r0:k

Dnðs’Þ (2)

with

s’ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a:ðt � tcÞ=r20

q
The term A is supposed to group the influence of non-perfect

thermal contact while the time correction tc is expected to take into
account other non-ideal conditions such as the thermal inertia of the
probeandthenon-instantaneousestablishmentoftheheatingpower.

When the number of concentric rings is very important (n/N),
the term DnðsÞ can be expressed more simply:

DNðsÞ ¼
Zs
0

Z1
0

Z1
0

u:y
s2

:exp
�
� u2 þ y2

4:s2

�
:I0

�
u:y
2:s2

�
:du:dy:du: (3)

The increase of the temperature of the probe is measured
experimentally from the variations of the electrical resistance of
the probe using the following relation:

RðtÞ ¼ R0:
�
1þ a:DTexpðtÞ

�
0DTexpðtÞ ¼ RðtÞ � R0

a:R0
(4)

where R0 (U) is the initial electrical resistance and a(K�1) is the
temperature coefficient of resistivity of the probe

A curve fitting procedure is then applied to the thermograms
recorded experimentally in order to estimate the values of the
thermal conductivity and diffusivity as well as the parameters A
and tc which minimize the differences between the experimental
DTexp and theoretical DTth variations of the temperature. In practice,
a minimum sample size is required given that the distance traveled
by the heating referred as “probing depth” must not exceed the
available sample size in order to avoid “side effects”. This “probing
depth” can be estimated by Dz2:

ffiffiffiffiffiffiffiffiffiffiða:tÞp
. This leads to an optimal

time interval ½0; tmax� proposed by the manufacturer for the appli-
cation of the parameter estimation.

2.2. Numerical modeling of the hot-disk measurement

We have developed a numerical model taking into account the
entire phenomenon actually neglected in the analytical model used
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for the parameter estimation process (Eq. (1)) of the classical hot-
disk measurement technique, i.e., the thermal influence of the
probe, the contact resistance and the presence of radiative heat
transfer. This axisymmetric model is based on a combination of the
Finite Volume Method (FVM) and the Discrete Ordinates Method
(DOM). These methods consist in the computation of the temper-
ature field (T(r,z)) and intensity field I(r,z,q,4) in the semi-
transparent surrounding medium and in the circular opaque
probe (Tp(r,z)). The circular probe taken into account in themodel is
shown on Fig. 1 and reproduces as realistically as possible the
structure of existing probes. They are actually composed of a thin
Nickel spiral immersed in a Kapton slab. In particular, the heat is
only generated in the Nickel spiral while the Kapton slab is ther-
mally inert. The FVM and DOM are similar to the ones used in [18]
for the modeling of the hot-ring method. Thus, we only give a brief
description of the model and of the resolution method in this paper
and invite the reader to consult [18] for more details.

2.2.1. Governing equations
2.2.1.1. Energy equation in the surrounding medium. The heat
balance in a homogeneous semi-transparent, conductive but non
convective medium is governed by the energy equation which
takes into account the conductive and radiative heat transfer:

r:C
vTðr; zÞ

vt
¼ � V

/
: q!t ¼ ��V/ : q!c þ V

/
: q!r

� ¼ k
v2Tðr; zÞ

vr2

þ 1
r
k
vTðr; zÞ

vr
þ k

v2Tðr; zÞ
vz2

� V
/

: q!r ð5Þ

2.2.1.2. Energy equation in the hot-disk probe. The probe is opaque
and thus, only the conductive heat flux divergence has to be
considered. Moreover, the probe is actually made of a Nickel spiral,
in which the heat is generated, covered on both sides with Kapton.
As mentioned before, heat generation only occurs in the Nickel
spiral in which Joule effects take place. Therefore, the energy
equation in the Nickel nodes is:

rNi:CNi
vTpðr; zÞ

vt
¼ � V

/
: q!c þ _Q ¼ kNi

v2Tpðr;zÞ
vr2

þ 1
r
kNi

vTpðr; zÞ
vr

þ kNi
v2Tpðr;zÞ

vz2
þ _Q ð6Þ
Fig. 1. Illustration of the composition of the probe and t
Where

_Q ¼ Q
VNi

While for the nodes made of Kapton:

rKa:CKa
vTpðr; zÞ

vt
¼ � V

/
: q!c ¼ kKa

v2Tpðr; zÞ
vr2

þ 1
r
kKa

vTpðr; zÞ
vr

þ kKa
v2Tpðr; zÞ

vz2
ð7Þ

Note that, in our model, the inhomogeneous distribution of the
heat generation inside the probe is taken into account, contrary to
the quadripole model developed in [15] which assumed that heat is
homogeneously generated. Moreover, real thermophysical proper-
ties of the constituents of the probe can be taken into account in our
model while [15] assumed that the probe is entirely made of
Kapton.

2.2.1.3. Radiative transfer equation in the surrounding medium.
Regarding the radiative heat transfer, the radiative flux is related to
the intensity field in the medium:

q!r ¼ qrr e
!

rþqzr e
!

zwithqrrðr;zÞ ¼
Z

U¼4p

Iðr;z;q;4Þm:dm;qzrðr;zÞ

¼
Z

U¼4p

Iðr;z;q;4Þx:dx ð8Þ

and

V
/

: q!r ¼ 1
r
v

vr
�
rqrr
�þ vqzr

vz
(9)

The radiation intensityfield is governedby theRadiative Transfer
Equation (RTE) described in details in [18]. For a 2-D axisymmetric
radiative transfer in an homogeneous and isotropic semi-
transparent material with azimuthal symmetry, this equation is:

m

r
vðr:Iðr; z; q;4ÞÞ

vr
�1
r
vðh:Iðr; z; q;4ÞÞ

v4
þ x

vIðr; z; q;4Þ
vz

þ b:Iðr; z; q;4Þ

¼ k:I0ðTÞ þ s

4p

Z
U’¼4p

Pðq’Þ:Iðr; z; q’;4’ÞdU’ ð10Þ
he thermal boundary conditions around the probe.
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We can notice that it is necessary to know the temperature field
in the medium to solve the RTE and to determine the radiation
intensity field.

2.2.1.4. Radiative boundary conditions. The boundary conditions at
the interface between the surrounding medium and the disk probe
are related to the emissivity of the probe (Kapton) and temperature
at the surface of the probe:
Iðr0; z; q;4Þ ¼ εKaI
0�Tpðr0; e=2Þ� þ 1� εKa

p

Z
U’¼2p;m’<0

Iðr0; z; q’;4’Þ:jm’jdU for m > 0 and jzj < e=2

Iðr;�e=2; q;4Þ ¼ εKaI
0�Tpðr; � e=2Þ� þ 1� εKa

p

Z
U’¼2p;x’<0

Iðr; � e=2; q’;4’Þ:jx’jdU’ for x > 0 and r < r0 (11)
We also have the following relations for the radiative intensities
far from the disk probe:

Iðr/N; z; q;fÞ ¼ I0ðTextÞ for m < 0 and Iðr; z/þN; q;4Þ
¼ I0ðTextÞ for x < 0

(12)

2.2.1.5. Thermal boundary conditions. At the interface between the
probe surface (Kapton) and the surrounding material, if we take
into account the thermal contact resistance and the radiative heat
transfer, the thermal boundary conditions are:

�kKa
vTpðr;zÞ

vz

����
z¼�e=2

¼�k
vTðr;zÞ

vz

����
z¼�e=2

þqzr
��
z¼�e=2 for r< r0

Tpðr;�e=2Þ ¼ Tðr;�e=2ÞþRc:4 with 4¼�kKa
vTpðr;zÞ

vz

����
z¼�e=2

(13)

�kKa
vTpðr;zÞ

vr

����
r¼r0

¼ �k
vTðr;zÞ

vr

����
r¼r0

þqrr
��
r¼r0

for jzj< e=2

Tpðr0;zÞ ¼ Tðr0;zÞþRc:4 with 4 ¼ �kKa
vTpðr;zÞ

vr

����
r¼r0

(14)

Similarly, at the interface between the Nickel and Kapton parts
of the probe, the energy conservation leads to the following
thermal boundary conditions:

�kKa
vTpðr;zÞ

vz

����
z¼�eNi=2þ

¼�kNi
vTpðr;zÞ

vz

����
z¼�eNi=2�

forr<r0 (15)

�kKa
vTpðr; zÞ

vr

����
rþ

¼ �kNi
vTpðr; zÞ

vr

����
r�

for jzj < e=2 (16)

The other boundary conditions are:

Tðr; z; tÞ ¼ Text ; Tpðr; z; tÞ ¼ Text For all r and zwhen t � 0
Tðr; z; tÞ ¼ Text For r/N or z/N

(17)
2.2.2. Numerical resolution of the transient coupled heat transfer
In order to solve the energyequations Eqs. (5)e(7) and to calculate

numerically the variation of the temperature field in the probe and in
the surroundingmaterialduring the transientheat transfer,weuse an
explicit time marching technique. As it is necessary to know the
temperature field to solve the RTE and to compute V
/

: q!r in the
surrounding material, an internal iterative process should be per-
formed at each time step to produce consistency between the
temperature profile and the radiation field. However, when the time
interval between two time steps is small (Dt< 0.1 s in our study), this
internal iterative process is superfluous and the temperature field at
the new time step could be calculated directly using the radiation
intensity field at the previous time step without causing errors.
2.2.2.1. Resolution of the energy equation and computation of the
temperature field. At each time step, the resolution of the energy
equations (Eqs. (5)e(7)) permit to compute the new temperature
distribution in the surrounding medium and in the probe from the
temperature and radiation intensity profiles at the previous time
step. To solve these equations we use a spatial discretization
dividing the space in nR� nZ elementary volume. As the plane z¼ 0
is a plane of symmetry, we only consider the heat transfer in the
region z > 0. In order to limit the computation time and memory
requirement, the heat transfer problem is solved in a finite volume
around the probe. Then the calculations are restricted to
0< r< rmax and 0< z< zmax. This volumemust be sufficiently large
to make sure that the theoretical temperature profile inside the
disk is not influenced by the value of rmax and zmax. A node is placed
at the center of each elementary volume of coordinate ri and zj and
the numerical resolution computes the evolution of the tempera-
ture (noted Ti,j) at these nodes. The elementary volumes with
i � nRp and j � nZp correspond to probe nodes (thermal properties
rKa, CKa, kKa and rNi, CNi, kNi) while the other elements are made of
surrounding material (thermal properties r, C, k, b, s, P(q’)).

The spatial discretization along the z-axis is constant in the
probe but provides narrower volumes in the surrounding medium
near the probe where important temperature gradients are found.
Then, we have:

Dzj¼e=nZj for j¼1;Dzj

¼
�
cos
�ðj�1Þp

2nZ

�
�cos

�
jp
2nZ

�	

zmax�e

2

�
forj¼nZp;nz (18)

Similarly, the spatial discretization along the radial coordinate is
constant in the probe and provides narrower volumes in the
surrounding material near the probe:

for i ¼ 1;nRpf0 < r < r0g ;Dri ¼
r0
nRp

(19)

for i ¼ nRp þ 1;nR; fr0 < r < rmaxg;Driþ1

¼ 1:8� DRi and
XnR

i¼nRpþ1

Dri ¼ rmax � r0 (20)

For the nodes containing the semi-transparent surrounding
medium, which are not in contact with the disk (nodes (i,j);
i ¼ nRp þ 1, nR and j ¼ nZp þ 1, nZ), if we express the energy
equation Eq. (5) in a discretised form, we obtain:



R. Coquard et al. / International Journal of Thermal Sciences 65 (2013) 242e253 247
Dt6
Ttiþ1;j�Tt

i;j

Dr =2þDr =2
�

Tti;j�Tti�1;j

Dr =2þDr =2

Ttþ1
i;j ¼ Tti;jþrC

2
664k iþ1 i i i�1

Dri

þ k
ri

Ttiþ1;j�Tt
i�1;j

DriþDri�1=2þDriþ1=2

þk

Tti;jþ1�Tt
i;j

Dzjþ1=2þDzj=2
�

Tti;j�Tt
i;j�1

Dzj=2þDzj�1=2
Dzj

��V/ : q!r
�t
i;j

3
7775 (21)

where ðV/ : q!rÞ
t

i;j is the divergence of the radiative heat flux at the
node i,j at time step t

For the nodes of surrounding materials placed near the probe
a similar discretised relation could be obtained by applying an
energy balance.

The temperature of the probe nodes at the new time step are ob-
tained from the energy equation (Eqs. (6) and (7)) and the boundary
conditions (Eqs. (13) and (14)) expressed in a discretised forms.

Finally, the other thermal boundary conditions in a discretised
form are:

T0i;j ¼ Text for all j and i; TtnRþ1;j ¼ Text for all t and j; Tti;nZþ1

¼ Text for all t and i

(22)At each time step, the mean temperature Tt
p of the disk probe is

obtained by simply averaging the temperatures computed in each
probe element:

Ttp ¼
PnRm

i¼1
PnZm

j¼1 T
t
i;j:Vi;j

Vp
¼
PnRm

i¼1
PnZm

j¼1 T
t
i;j:Vi;jPnRm

i¼1
PnZm

j¼1 Vi;j
(23)

2.2.2.2. Resolution of the 2-D axisymmetric RTE using the discrete
ordinates method. In order to calculate the radiative flux ðqrrÞi;j and
ðqzrÞi;j and the radiative flux divergence ðV/ : q!rÞi;j in each point of
the spatial discretization of the surrounding material, it is neces-
sary to solve the 2-D axisymmetric Radiative Transfer Equation (Eq.
(10)). Several numerical methods can be used to solve the RTE
(spherical harmonics method, the zone method of HOTTEL, the ray-
tracing methods .). In our study, we use the Discrete Ordinates
Method based on a spatial discretization of the area around the
circular probe and on an angular discretization of the space. The
angular discretization allows replacing the angular integrals by
finite summations over nd discrete directions m (mm, hm, xm) with
given weighting factors wm. For convenience purpose, the spatial
discretization is the same as the one used for the numerical reso-
lution of the energy equation. The 2-D discrete ordinates solution
for a radiatively participating medium in a cylindrical enclosure has
been widely described, notably by Carlson and Lathrop [19] or
Jendoubi et al. [20] and we will not detail it in this article.

Once the discretised intensity field in the semi-transparent
medium around the circular probe has been determined, the
radiative flux and radiative flux divergence are calculated using the
discretised form of Eq. (8):�
qrr
�
i;j ¼

" Xnd
m¼1

Imi;jmmwm

#
and

�
qzr
�
i;j ¼

" Xnd
m¼1

Imi;jxmwm

#
(24)

�
V
/

: q!r
�
i;j ¼

1
ri

riþ1=2
�
qrr
�
iþ1=2;j � ri�1=2

�
qrr
�
i�1=2;j

Dri

þ
�
qzr
�
i;jþ1=2 �

�
qzr
�
i;j�1=2

Dz
(25)
2.2.3. Validation of the numerical model
The numerical resolution of the 2-D axisymmetric radiative

problem has been tested by comparing the results of our model
with various published results [20,21] for different media where
only radiative transfer occurs and for different radiative boundary
conditions. The accuracy of the numerical method is strongly
dependent on the quadrature used for the angular discretization.
We have tested different SN quadratures. The results obtained when
using the quadrature points and weights of the S6 scheme prove to
be quite satisfactory in all cases and we will use this quadrature in
all the following numerical calculations.

Concerning the entire 2-D transient radiation/conduction
coupling problem, few previous results have already been pub-
lished [22,23]. We have compared the results of our numerical
model with these studies and found a good agreement. However,
the results presented in these papers concern theoretical problems
with boundary conditions notably different from the ones
encountered in our hot-disk simulation. Thus, it seems to us that it
is more suitable to illustrate the validity of our numerical resolution
by comparing with TPS results available for two ideal cases:

� Infinite purely conductive medium (b / N,
k ¼ 0.035 Wm�1 K�1, r.C ¼ 35 � 1200 J/m3/K) surrounding
a thermally neutral hot-disk probe without thermal contact
resistance

� Infinite transparent medium (b ¼ 0; k ¼ 0.035 Wm�1 K�1,
r.C ¼ 35 � 1200 J/m3/K) surrounding a thermally neutral hot-
disk probe without thermal contact resistance

Although these two ideal cases are limiting, they seem to us
more appropriate to illustrate the validations of the model as the
boundary conditions are close to the real problem.

The first ideal test case corresponds to the classical TPS method
used in the hot disk thermal constants analyzer (HD) manufactured
by hot disk AB. The variation of the temperature of the disk is
then given by Eq. (1). In order to model numerically this case,
the computations were carried out by setting
rNi:CNi ¼ rKa:CKa ¼ r:C ¼ 100� 1200J=m3:K , kNi ¼ kKa ¼ k ¼
0:035W=m=K (no thermal inertia of the probe), Rc ¼ 0 (no thermal
contact resistance) and ðqrrÞi;j ¼ 0, ðqzrÞi;j ¼ 0 and ðV

/
: q!rÞi;j ¼ 0

(purely conductive medium) and by applying an homogeneous
heat generation in the entire probe.

We compared, on Fig. 2, the results of the analytical formula for
an homogeneously heated probe (n/N:Eq. (3)) with the temper-
ature rise predicted by our numerical simulation using the
following parameters r0 ¼ 0.003189 m, e ¼ 60 mm, Q ¼ 0.01 W,
Text ¼ 296 K. For both calculations, we set the numerical parameter
nRp ¼ 8, nR ¼ 22, nZ ¼ 33, rmax ¼ 0.2 m and zmax ¼ 0.1 m. We have
checked that these values of rmax and zmax are sufficiently impor-
tant in order for the numerical results to remain independent of
their values. In the next, all the numerical computations have been
conducted with the preceding values of nRp, nR, nZ, rmax and zmax.
On Fig. 2, we have also depicted the evolutions of the discrepancies
ðDT*ðtÞ ¼ jDTp;anaðtÞ � DTp;num:ðtÞj=DTp;anaðtÞÞ.

The comparison between analytical and numerical results show
that the temperature rise computed by neglecting radiative heat
flux divergence is very close to the analytical solution as the relative
differences are always lower than 0.5% when t > 5 s. We notice that
themaximumdifferences between analytical and numerical results
are found for the very low values of time t.

Regarding the second test case, it corresponds to the trans-
parency limit b ¼ 0. Under this assumption, the conductive and
radiative contributions can be evaluated separately as the
surrounding medium does not participate to the radiative transfer



Fig. 2. Comparison of the thermograms obtained analytically and numerically for the
two ideal cases used for the validation (opaque and transparent).
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ððV/ : q!rÞi;j ¼ 0Þ. There is a direct radiative exchange between the
probe and the surrounding environment at T ¼ Text. Therefore, the
radiative heat flux emitted by the probe only depends on its
emissivity and its local temperature. It can be evaluated by the
analytical relation:

qzri�nRm;j¼nZmþ1=2
¼ εpsSB



T4
i;j¼nZm � T4ext

�
and qrrnRm�1=2;j�nZm

¼ εpsSB



T4
nRm;j�nZm � T4ext

�
(26)

The numerical results obtained by setting ðV/ : q!rÞ
t

i;j ¼ 0 and
using the previous boundary conditions Eq. (22) with εp ¼ 1 in the
purely conductive problem have been compared to those obtained
by setting b ¼ 10�6 m�1 in the numerical resolution of the
conductioneradiation coupling. The deviation between the two
numerical methods is always lower than 0.1% in the time range 0e
100 s. Thus, the numerical resolution of the radiative problem
proves to give satisfactory results.

As a conclusion the calculations carried out for the two limiting
cases show that, when using the spatial discretization nRm ¼ 8,
nR ¼ 22, nZ ¼ 33 and the S6 angular quadrature, our numerical
method accurately simulates the temperature rise of the hot disk
and near the hot disk probe.
2.3. Identification of thermal properties from hot-disk experiment

Following the principle of hot disk thermal constants analyzer,
we have developed an identification procedure to estimate the
thermal conductivity and thermal diffusivity from the TPS ther-
mograms. The identification procedure developed is based on
a least square fit method which minimizes the difference between
the measured temperature Tp,exp.(t) of the probe and the tempera-
ture Tp,th.(t) predicted by the analytical model. The principle is to
minimize the function F representing the sum of the quadratic
discrepancies between the experimental and theoretical variations
of the temperature:

F ¼
XN
n¼1

h
DTp;expðtnÞ � DTp;thðtnÞ

i2
(27)

The evolution of the temperature calculated by the analytical
model is influenced by r0, r.C, k, _Q , A and tc. Given that r0 and Q are
known, DTp,th.(t) and F only depend on the 4 parameters P1 ¼ k,
P2 ¼ r.C, P3 ¼ A and P4 ¼ tc which have to be identified by mini-
mizing F. We have:
F ¼ Fðr:C; k; tcÞ ¼
XN h

DTp;expðtnÞ � DTp;thðtnÞ
i2

(28)

n¼1

In order to minimize F, the parameters Pk should satisfy the
relations:

vF
vPk

¼ v

vPk

"XN
n¼1



DTp;expðtnÞ � DTp;thðtnÞ

�2# ¼ 0

0
XN
n¼1

�

DTp;expðtnÞ � DTp;thðtnÞ

�
:
vTp;numðtnÞ

vPk

	
¼ 0

for k ¼ 1;4

(29)

The partial derivatives vTp;num:ðtnÞ=vPk are called the sensitivity
coefficients and represent the rate of variation of the mean
temperature of the probe at the time tn due to a variation of the
parameter Pk.

In order to solve this system of non-linear equations, we use the
iterative method of Gauss starting from initial values P0k . At each
iteration level l, the following system of equations is solved:

XN
n¼1

�

DTp;expðtnÞ�



DTp;thðtnÞ

�l�
:

�
vTp;thðtnÞ

vPk

�l	
¼0 fork¼1;4

(30)

Moreover, the value ðDTp;th:ðtnÞÞl at the iteration level l can be
approximated from the values at the iteration level le1 by the
following relation:

DTp;th:


tn; ½Pk�lk¼1;4

�
¼ DTp;th:



tn; ½Pk�l�1

k¼1;4

�

þ
XN
k¼1

�
vTp;thðtnÞ

vPk

�l�1

:DPl�1
k (31)

We finally have to solve the following matrix system, where the
superscript l refers to the entire matrixes:

h
Ak;j

il
:
�
DPj
l ¼ ½Bk�l (32)

with

Al
k;j ¼

XN
n¼1

�
vTp;th:ðtnÞ

vPk

�l

:

 
vTp;th:ðtnÞ

vPj

!l

;Blk

¼
XN
n¼1

�

DTp;expðtnÞ � DTp;th:ðtnÞ

�
:
vTp;th:ðtnÞ

vPk

�l

This system is solved successively for each iteration level l to
calculate the values ½Plþ1

k ¼ Plk þ DPlk�k¼1;4 until the ratios
½DPlk=Plk�k¼1;4 are lower than a convergence criterion.
3. Numerical analysis

The numerical model presented in Section 2.2 has been used to
simulate the variations of the temperature Tp(t) for various non-
ideal cases for which the radiative heat transfer in the medium
and the thermal inertia of the probe are significant. Moreover, in
order to produce even more realistic thermograms, the evolutions
of the temperature of the probe generated numerically have been
noised. This noise consists in the addition of a random artefact to
the thermogram, corresponding to a certain proportion No of the
maximum temperature:
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DT ’p;GðtnÞ ¼ DTp;GðtnÞ þ ð0:5� 2nÞ � No for n ¼ 1;N (33)

Where zn are randomly generated numbers comprised between
0 and 1

Thereafter, the identification procedure described in Section 2.3
has been applied to the numerically generated noised thermograms
which are supposed to reproduce realistic experimental thermo-
grams. This has been done by setting DTp;expðtnÞ ¼ DT ’

p;GðtnÞ in
Section 2.3. It is also important to notice that the time intervals [t1, tN]
used for the identifications correspond to the interval [tmin, tmax]
recommended by themanufacturer of the hot disk thermal constants
analyzer. Therefore, the difference between the identified and initial
thermal conductivity k and thermal inertia r.C allows to quantify the
errors on the estimations of these properties due to deviations from
the ideal experimental conditions of the classical hot-disk method.

N.B: The influence of the thermal contact resistance between
the probe and the surroundingmedium has also been analyzed. The
numerical results show that this resistance has a very slight influ-
ence on the temperature rise except for extremely large and
unrealistic values of Rc (>1 m2 K/W). Moreover, compared to the
ideal model, it leads to a constant shift of the temperature as
previously mentioned by numerous previous studies (Gustavsson
and Gustafsson [17] or Jannot and Acem [15]). This constant shift is
well-fitted by the constant temperature jump (parameter A) and
does not influence the values of the thermophysical parameters k
and (r.C) identified.
Fig. 3. Spectral variations of the scaled extinction coefficient of materials A and B
(identified from spectrometric measurements in Ref. [4]).
3.1. Errors due to the contribution of radiative heat transfer

For materials with low-density having a semi-transparent radi-
ative behavior, radiative heat transfer may be significant, even at
ambient temperatures. It is notably the case of low density thermal
insulators such as glass and rockwools ([24]) or polymer foams [25].
For such materials, the property of interest is the so-called “equiv-
alent thermal conductivity” characterizing the magnitude of the
total heat transfer by conduction and by thermal radiation. In
practice, this property has to be evaluated experimentally using the
classical guarded hot-plate method. This equivalent conductivity
could theoretically not be measured by transient measuring
methods (FLASH method, hot-wire method) and noticeably by the
hot-diskmethod since theyare all basedon theassumptionof purely
conductive heat transfer. Indeed, the radiative heat transfer obeys
mechanisms which are quite different from thermal conduction.
However, some specific studies have shown that, under certain
conditions, the equivalent conductivity of low-density thermal
insulators could be estimated with a satisfying accuracy using the
classical FLASH method [4] or the hot-wire method [18].

Therefore, in this section,wehaveevaluated thepossibility touse
the hot-disk method to estimate satisfactorily the equivalent
conductivity and diffusivity of such materials. We have numerically
generated noised thermograms obtained by solving the transient
coupled heat transfer (Section 2.). In this section, in order to analyze
the only influence of radiative transfer, the thermal contact was
neglected and the probe was considered to be thermally neutral:
Rc ¼ 0 m2 K/W, rKa.CKa ¼ rNi.CNi ¼ r.C and kKa ¼ kNi ¼ k. The dimen-
sions of the probe are: r0 ¼ 0.003189 m, e ¼ 30 mmwhile Kapton is
considered as a perfect emitter (εKa ¼ 1). For simplicity purpose, we
considered that the probes are made of a very important number of
concentric rings (n / N) so that energy dissipated in the Nickel
could be assumed uniformly distributed along the probe radius

( _Q ¼ Cst for jzjheNi
2
; R < r0) keeping _Q ¼ 0 for

eNi=2 < jzj < e
2
; R < r0. Then, Eq. (3) can be used to compute Tp,th

during the identification procedure described in Section 2.3.
For simplicity purpose, we considered that the probes are made
of a very important number of concentric rings (n / N) so that
energy dissipated in the Nickel could be assumed uniformly
distributed along the probe radius ( _Q ¼ Cst for jzjheNi

2
; R < r0)

keeping _Q ¼ 0 for eNi=2 < jzj < e
2
; R < r0. Then, Eq. (3) can be

used to compute Tp,th during the identification procedure described
in Section 2.3.

The thermo-physical properties of the materials modeled have
been chosen in order to be representative of real low-density
thermal insulators such as Polyvinyl-chloride foam (Mat. A:PVC)
and extruded PolyStyrene foams (Mat. B:XPS).

� for material A.:r¼ 55 kg/m3, C¼ 1200 J/kg/K, keff¼ 0.03W/m/K
� for material B.:r¼ 35 kg/m3, C¼ 1200 J/kg/K, keff¼ 0.03W/m/K

where keff is the effective thermal conductivity representing the
contribution of conduction alone (through solid and fluid)

The radiative properties used for these materials have been ob-
tained from Ref. [4]. In this study, the authors assumed that the scat-
tering phase functions follow the HenheyeGreenstein law
ðPlðqÞ ¼ 1� g2

l
=ð1þ g2

l
� 2:gl:cosqÞ1:5Þ. Therefore, theymanaged to

identify the three spectral properties bl, ul, and Pl(q) using the direc-
tional and hemispherical transmittances and reflectances measured
on thinand thick slicesof foams.The thicknessesof the thin sliceswere
1.0 mm and 0.87 mm for Mat A. and B. respectively. We depict on the
same figure (Fig. 3), the variations of the weighted spectral extinction
coefficient b*l ¼ kl þ sl � ð1� glÞ identified for these two materials
and the error bars associated with the corresponding uncertainties.

Using the values of bl, ul, and Pl(q) identified, it is possible to
compute the equivalent thermal conductivities kequ,num of the two
materials by solving the steady-state 1-D coupled heat transfer
between two infinite and perfectly emissive plates maintained at
fixed temperatures. This actually corresponds to a numerical
simulation of the guarded hot-plate measurement. For this calcu-
lation, the numerical model described in [26] has been used. For
consistency purpose, we assumed that the plates are, like the probe,
perfectly emissive εh ¼ εc ¼ εp ¼ 1. kequ,num may also depend on the
space interval L between the plates. However, we have checked that
these variations are almost negligible when L exceeds a relatively
low value. Therefore, for common slab thicknesses (>50 mm), the
equivalent conductivity could be considered independent of L.

The value of kequ,num depends on the mean temperature of the
hot and cold plates since the radiation intensity emitted is
proportional to T4 but is almost independent of the temperature
difference between them. In order to analyze the influence of the



Fig. 4. Comparison of the generated and identified thermograms for semi-transparent
Materials A and B using ideal probes with Q ¼ 0.005 W.
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temperature on the hot-disk measurement, we conducted the
identification of k and (r.C) using two different heating powers
Q ¼ 0.02 W and 0.005 W.

The values of thermal properties identified as well as
the relative deviations from the real values
ðDk ¼ jkident: � kj=k;Dðr:CÞ ¼ jðr:CÞident � ðr:CÞj=ðr:CÞÞ are
summarized in Table 1 where we also indicate the mean discrep-
ancies between numerically generated and identified thermograms
ðhDT*i ¼ Pt¼ tmax

t¼ tmin ðjDT ’
p;G:ðtÞ � DTp;th:ðtÞjÞ=

Pt¼ tmax
t¼ tmin DT ’

p;G:ðtÞÞ. We

also have compared the numerically generated and identified
thermograms as well as the evolutions of the discrepancies
ðDT*ðtÞ ¼ DT ’

p;GðtÞ � DTp;th:ðtÞ=DT ’p;GðtÞÞ on Figs. 4 and 5.

The values of kequ,num indicated in Table 1 have been computed
for a temperature corresponding to the mean temperature of the
probe in the time interval used for the identification.

The results obtained clearly indicate that, for low-density
polymer foams, the presence of a radiative transfer contribution
does not impact the accuracy of the hot-disk method. The thermal
conductivity estimated by this method actually corresponds to the
equivalent conductivity. Indeed, one can remark that the relative
errors on k compared to kequ is very low (<3%) in every cases
considered. The errors on (r.C) are more important and can reach
approximately 4e5% for sample B in which the radiative contri-
bution is the most important. However, this remains acceptable.
One can also notice on Figs. 4 and 5 that the fitting between
numerically generated and identified thermograms is excellent.
The relative deviations DT observed are almost entirely due to the
noise added to the generated thermograms. It is also interesting to
notice that the conductivities identified are sensitive to the level of
temperature reached during the measurement since the values for
a heating power Q ¼ 0.02 W are slightly more important than for
Q¼ 0.005W. This illustrates the fact that the radiative heat transfer
contribution increases rapidly with the temperature leading to an
increase of the equivalent conductivity.

However, it should be reminded that these conclusions have
been obtained assuming that the thermal contact resistance and
thermal properties (inertia and conductivity) of the probe do not
disturb the measurement. We will verify this latter assumption in
the following section.

3.2. Errors due to the thermal properties of the probe

Another source of error in the estimation of the thermal prop-
erties using the hot-disk technique might be caused by the fact that
the thermal inertia and conductivity of the probe are different from
the ones of the material tested. Indeed, insulating materials have
the particularity to exhibit, at the same time, low thermal inertia
and thermal conductivities. We have evaluated the importance of
this source of errors by conducting the identification on thermo-
grams generated numerically using realistic values of the dimen-
sions, composition and thermal properties of the probe which are
commonly encountered. We used: r0 ¼ 0.03189 m, e ¼ 30 mm,
eNi ¼ 0.5 � e ¼ 15 mm, rKa ¼ 1420 kg/m3, CKa ¼ 1090 J/(kg K),
kKa ¼ 0.2 W/m/K, rNi ¼ 8900 kg/m3, CNi ¼ 440 J/(kg K), kNi ¼ 91 W/
m/K. At the same time, we have also generated numerical
Table 1
Results of the identification procedure for thermograms generated for semi-transparent

Mat. Q (W) kident W/m/K kequ,num W/m/K Dk (%) (

A 0.02 0.0362 0.0373 3.0 6
0.005 0.0362 0.0366 1.3 6

B 0.02 0.0361 0.0359 0.5 3
0.005 0.0363 0.0353 2.8 4
thermograms for the case where an “ideal” probe was used, i.e., its
thermal properties are identical to that of the material
rKa.CKa ¼ rNi.CNi ¼ r.C and kKa ¼ kNi ¼ k. The other properties are the
same as the “real” probe: r0 ¼ 0.03189 m, e ¼ 30 mm, eNi ¼ 15 mm.
The identification procedure has also been conducted on these
thermograms.

Like in previous section, we considered that the probes are
made of a very important number of concentric rings (n / N) so
that energy dissipated in the Nickel could be assumed uniformly
distributed along the probe radius.

The computations were conducted for two purely conductive
material with thermal inertia and conductivities representative of
classical low-density thermal insulators:

� Material 1: A typical PS foamwith k ¼ 0.035W/m/K, r ¼ 35 kg/
m3, C ¼ 1200 J/(kgK).

� Material 2: A typical superinsulating Silica aerogel with
k ¼ 0.02 W/m/K, r ¼ 150 kg/m3, C ¼ 1200 J/(kgK)

We do not consider deliberately the radiative heat transfer in
the materials although it may contribute noticeably to the heat
transfer (especially for PS foams). Actually, we assume that the
materials are purely conductive with an equivalent conductivity
encompassing the conductive and radiative contributions in order
to analyze the only influence of the thermal properties of the probe
on the results of the identification. The other parameters used for
the numerical generation of the noised thermograms are: Q ¼ 0.02
(Mat. 1) and 0.005 W (Mat. 1), Tinit ¼ 296 K, z ¼ 1% and Rc ¼ 0 K/
(m2 W).

The results of the identifications are summarized on Table 2 and
the comparisons of the identified and generated thermograms are
depicted on Figs. 6 and 7 (Table 3).

As expected, the relative errors obtained when considering an
“ideal” probe (rKa.CKa ¼ rNi.CNi ¼ r.C and kKa ¼ kNi ¼ k) are quite
negligible for the two properties identified and for both materials.
One can also notice the very good fitting (hDT*i ¼ 3.6 � 10�3 and
3.3 � 10�3) and the very low values of parameter A (0.0165 and
polymer foams using an ideal probe.

r.C)ident (J/m3) D(r.C) (%) Aident (K) (tc)ident (s) hDT*i
5091 1.4 0.359 0.069 0.0039
7423 2.1 0.133 0.0391 0.0034
9984 4.8 0.211 0.059 0.0038
3620 3.8 0.162 0.0128 0.0034



Fig. 5. Comparison of the generated and identified thermograms for semi-transparent
Materials A and B using ideal probes with Q ¼ 0.02 W.

Fig. 6. Comparison of the generated and identified thermograms for Material 1 using
ideal and real probes.
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0.085 K) and tc (�4.7 � 10�5 and �0.026 s) indicating that the
corrections of the thermograms from the ideal case are very slight.

On the other hand, the results for the thermograms obtained
with the real probe show that, the fact that thermal properties of
the probes differ from the ones of the material tested, influences
noticeably the accuracy of the hot-disk measurement. Both the
thermal inertia (rKa.CKa) (rNi.CNi) and thermal conductivities kKa and
kNi of the probe disturbs the ideal measurement. Indeed, Materials1
and 2 have thermal inertia noticeably lower than that of the probe
materials (Ni, Ka), and thus the temperature rise of the probe are
later than when an ideal probe is considered. The energy required
to heat the real probe is then noticeably more important and needs
a larger heating time so that the thermogram is delayed. The fitting
procedure well reproduce this delay (DT* ¼ 5.7 � 10�3 and
3.8 � 10�3) by identifying values of A and tc which are no more
negligible: A¼�2.94 K; tc ¼ 0.296 s for material 1 and A¼�1.22 K;
tc ¼ 0.27 s for material 2. However, one can notice that the errors on
the thermal properties identified are not negligible especially for
Material 1 for which it reaches 11.7% and 47% for k and r.C
respectively. The errors for Material 2 are noticeably lower (4.0% for
k and 0.3% for r.C) and remain acceptable if a relative error of 5% is
tolerated.

The fact that the errors are lower for Material 2 than Material 1
can be explained by the lower difference between its thermal
inertia (r.C¼ 1.8� 10�5 J/m3/K for Material 1 and r.C¼ 4.2� 10�4 J/
m3/K for Material 2) and the inertia of the constituents of the probe
(rKa.CKa ¼ 1.55 � 106 J/m3/K; rNi.CNi ¼ 3.92 � 106 J/m3/K). Therefore,
the disturbance of the thermogram due to the inertia of the probe
(delay of the temperature rise) is so important for sample n�1 that it
cannot be reproduced satisfactorily by the artificial fitting param-
eters A and tc. On the other hand, the delay of the temperature rise
for sample 2 can be matched more accurately by A and tc keeping
acceptable values for the thermal properties k and (r.C) identified.
As a conclusion, it appears that when the difference between the
thermal inertia of the probe and of the material tested exceeds one
order of magnitude, the thermal properties given by the classical
the Hot-disk method must be questioned.
Table 2
Results of the identification procedure for thermograms generated with real and ideal p

Material Probe kident (W/m/K) Dk (%) (r.C)ident (J/m

Mat. 1 IDEAL 0.0349 0.14 41491
REAL 0.0309 11.7 61853

Mat. 2 IDEAL 0.0199 0.45 1.81E5
REAL 0.0192 4.0 1.79E5

Bold value signify that the error values are greater than 5%.
4. Experimental validation

The preceding sections have permitted to highlight some of the
limitations of the classical hot-disk method when applied to
thermal insulators. However, these conclusions as well as the order
of magnitude of the errors caused by the deviations from the ideal
case are only based on a numerical study. In order to validate these
theoretical conclusions, we have conducted an experimental study
on standards thermal insulators in which radiative heat transfer is
non-negligible. Two different materials have been considered: an
XPS foam and a superinsulating Silica aerogel. The thermal prop-
erties of the XPS foam sample have been characterized accurately
by steady-state techniques at T ¼ 296 K:kequ ¼ 0.035 W/m/K,
r ¼ 33.0 kg/m3, C ¼ 1270 J/kg/K, (r.C) ¼ 41910 J/(m3 K). The Silica
aerogel sample, denominated Spaceloft, is produced by the Aspen
Aerogels� Company. The properties given by the manufacturer are:
kequ ¼ 0.0162 W/m/K; r ¼ 150 kg/m3; C ¼ 1100 J/(kg K);
(r.C) ¼ 1,65,000 J/(m3 K).

It has been proven in Section 3, that the application of the hot-
disk method to low-density insulating materials is questionable
due to the low thermal conductivity and low thermal inertia of
these materials when compared to the thermal properties of the
probe. The hot-disk probe used has the following characteristics:
r0¼ 3.189mm, n¼ 7, ez25 mm. Themeasurementswere conducted
by sandwiching the hot-disk probe between two slabs of XPS foam
sample with 80 mm in thickness or Silica aerogel with 8 mm in
thickness. It can be easily checked that these thicknesses are
significantlymore important than thedistanceDz2:

ffiffiffiffiffiffiffiffiffiffiða:tÞp
traveled

by the heating at the end of themeasurement and thus that no “side
effect” occurs for both measurement. A mechanical load has been
applied to the sandwich in order to minimize the thermal contact
resistance at the interface between the probe and the samples.

We have applied the identification procedure used in Section 3
to the thermograms obtained at a temperature of 296 K. Since the
number of concentric rings of the experimental device is, here,
finite, we used Eq. (1) with n ¼ 7 rather than Eq. (3) for the direct
model. The measured thermograms used for the validation are
robes on the three materials considered.

3/K) D(r.C) (%) Aident (K) (tc)ident (s) hDT*i
1.2 0.0165 �5 � 10�5 0.0036

47.3 �2.94 �0.296 0.0057
0.67 0.085 �0.026 0.0033
0.3 �1.218 0.27 0.0038



Fig. 7. Comparison of the generated and identified thermograms for Material 2 using
ideal and real probes.

Table 3
Results of the identification procedure for thermograms measured on the standard
polystyrene foam and the silica aerogel used for validation.

kident
(W/m/K)

Dk (%) (r.C)ident
(J/m3/K)

D(r.C)
(%)

Aident

(K)
(tc)ident
(s)

hDTi

XPS foam 0.0365 4.1 55120 39.2 �3.05 �0.138 0.0042
Silica aerogel 0.0179 10.6 92510 43.9 0.434 0.245 0.0012

Bold value signify that the error values are greater than 5%.

Fig. 9. Comparison of the measured and identified thermograms for the super-
insulating silica aerogel used for validation.
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actually average thermograms obtained from 5 consecutive
measurements on the same sample and under identical conditions.

It is interesting to observe that the fitting between experimental
and identified thermograms is very good (Figs. 8 and 9) for the two
samples considered. However, the values of the parameters A and tc
identified are significant. This confirms that some strong deviations
from the ideal measuring conditions are encountered in both cases.
One can also remark that the thermal conductivity identified from
the measured thermogram are quite acceptable for both materials
(þ4.0% for the XPS foam and þ10% for the silica aerogel). On the
other hand, the thermal inertia identified diverge more noticeably
from the real values (þ39% for XPS foam and �44% for silica
aerogel).

The fact that the thermal conductivity of the XPS foam sample
measured by the hot-disk technique is satisfactory could appear
inconsistent with the conclusions of Section 3.2 which predicts
larger relative errors (>10%) for a similar material (Material 1).
However, the error on the value of (r.C) are well predicted by the
Fig. 8. Comparison of the measured and identified thermograms for the standard
polystyrene foam used for validation.
numerical results of Section 3.2. Similarly, for the silica aerogel, the
significant difference between the identified and real thermal
inertia does not fully validate the conclusions of Section 3.2 for
Material 2. This might be due to the presence of other parasitical
phenomenons such as thermal leaks by the Nickel ring used for the
heating. Indeed, these thermal losses might become non-negligible
when measurements are conducted on materials with very low
conductivities. Anyway, the experimental results confirm that the
utilization of the hot-disk technique is questionable for low-density
materials, at least for estimating their thermal inertia.
5. Conclusions

Measuring accurately the thermal properties of insulating
materials still constitutes a big challenge since it generally requires
long measuring times and heavy measurement devices. In light of
this, the hot-disk measuring technique (also referred as TPS
method) developed during the last two decades presents several
strong assets according to the distributor hot disk AB:

� the required measurement time is relatively short (few
hundreds of seconds at max);

� the probe and measuring equipment are simple and easy to
use;

� the size of the samples required is relatively small (few mm in
thickness), no specific shape is necessary;

� according to the manufacturer, accurate measurements (<5%
for both k and a) can be obtained for a wide range of temper-
atures (cryogenic up to 1000 K) and a wide range of thermal
properties (0.005 < k < 500W/mK; 0.1 > a > 100 � 10�6 m2/s;
(r.C) up to 5 � 106 J/m3/K).

� both the thermal conductivity and diffusivity can be measured
simultaneously while two measurements are generally
required when using other techniques.

Consequently, the hot-disk method is currently largely used
with apparent satisfaction for a wide range of materials and
temperature. However, the level of accuracy of the method when
applied to low-density insulators has not been studied extensively
and remains questionable.

In order to meet this challenge, we have developed a numerical
model of resolution of the coupled heat transfer problem around
real hot-disk probes. This model allows us to simulate numerically
the thermal response of the probe for experimental conditions
diverging from the ideal conditions assumed in the fitting
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procedure (thermally neutral probe, purely conductive heat trans-
fer ..). A least square fit-method associated with an analytical
simulation of the purely conductive heat transfer around the probe
is applied to the generated thermograms. It allows estimating the
errors made on the thermal properties estimated by the classical
hot-disk fitting procedure when measurements are conducted on
different thermal insulators exhibiting a low thermal inertia (XPS
foam, silica aerogel) and/or a significant radiative contribution (XPS
foam).

The analysis of the numerical results reveals that the presence
of a significant radiative transfer has almost no influence on the
accuracy of the measurement. Therefore, the thermal conductivity
estimated by the hot-disk method for low-density semi-trans-
parent materials actually corresponds to their equivalent thermal
conductivity. This result is of great interest since the measure-
ment of the equivalent conductivity of low-density thermal
insulators is a major problem in the field of thermal
characterisation.

Numerical results also demonstrated that the fact that real
probes present thermal characteristics (either thermal inertia
(rNi.CNi) (rKa.CKa) or thermal conductivity kNi, kKa) noticeably
different from the thermal insulators tested disturbs noticeably the
thermograms recorded. The identification procedure succeeds in
fitting satisfactorily the thermal response by identifying noticeable
temperature shift and time correction. However, when the thermal
inertia of the material is too different from the probe, the thermal
conductivity and thermal inertia identified are likely to deviate
from the exact values. This is particularly the case for low-density
XPS foams whose thermal inertia (r.C) is almost 2 order of
magnitude lower than (rNi.CNi) and (rKa.CKa). In this case, the rela-
tive errors on k and (r.C) can exceed 10%. Lower errors are found for
insulating materials with larger thermal inertia such as silica aer-
ogel. Anyway, the validity of the present method is, in these cases,
questionable.

The hot-disk measurements conducted on a reference XPS
foam sample and a silica aerogel using a standard hot-disk
apparatus confirms this latest conclusion since significant errors
in the estimation of the thermal inertia are found for both mate-
rials whereas the errors on the thermal conductivity remain
acceptable.

This current limitation of the use of the classical Hot-Disk
method for insulating materials may certainly be overcome by
developing an improved identification procedure. In addition to the
parameters A and tc used in the classical method, this new proce-
dure would resort to one or more additional parameters allowing
to reproduce faithfully the disturbance and to identify accurate
values for both k and (r.C). This will be the subject of a coming
publication.
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