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Abstract
Two different field solver tools have been developed

in order to facilitate fast thermal and electro-static
simulation of microsystem elements. The µS-
THERMANAL program is capable for the fast steady-
state and dynamic simulation of suspended multilayered
microsystem structures. The 2D-SUNRED program is the
first version of a general field solver based on an original
method, the successive node reduction. SUNRED offers a
very fast and accurate substitute of FEM programs for the
solution of the Poisson equation. Steady-state and
dynamic simulation examples demonstrate the usability of
the novel tool.

1. Introduction
Thermal and electro-static effects play fundamental

role in the operation of many microsystem elements, as
e.g. infrared sensors, thermal rms meters, capacitive
displacement sensors, actuators based on the electrostatic
force, etc. All these problems require fast and reliable
field solver programs capable to solve the following
equation:
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where λ is the heat conductivity, c is the heat capacitance
per unit volume, T(x,y,z) is the thermal field and p(x,y,z)
is the incoming heat flux density. FEM methods can
always be used for this purpose, but the drawbacks are
well known: first of all the huge amount of time required
to define the problem.

Two entirely different programs have been developed
at TU Budapest for the solution of Eq. (1) aimed at
microsystem applications [1]. These two programs are
presented in this paper.

2. The µS-THERMANAL program

The µS-THERMANAL program has been developed
for the thermal simulation of suspended microsystem
elements as cantilevers, membranes, bridges, together
with the investigation of the conventional IC chips [2].

The ancestor of this program, the THERMANAL
program was an early realization of the well known
algorithm of Kokkas [3], with the extension for unlimited
number of layers [4]. In the model of Kokkas the structure
consists of equally shaped rectangular layers stacked on
an ideal heat sink. The dissipating elements are on the
surface of the uppermost layer only, and the heat is
removed via the bottom surface, the sidewalls are
adiabatic. Heat transfer is assumed only by conduction.
This model is a good one for conventional ICs, this

explains that several realizations have been reported even
recently.

In the algorithm of [3] the solution of the differential
equation is constructed in the form of two-dimensional
Fourier-cosine series. In our program this series is
calculated by Fast Fourier Transformation (FFT) method
− resulting in a quick solution both in steady-state and in
the frequency-domain.

The Fourier algorithm relatively easily can be
extended to calculate the temperature distribution on
multi-layer structured membranes as well. In this case the
boundary conditions are different from the usual IC
structure: the top and the bottom surfaces of a membrane
are adiabatic, while the sidewalls are isothermal,
considering the bulk silicon nearly ideal heat sink.

Fig.1. Steady-state temperature distribution on a
membrane surface. The rectangular shapes are the
dissipating elements.

These boundary conditions are fulfilled by using
Fourier-sine expansion instead of Fourier-cosine [2].
Simulation results of a membrane structure are presented
in Fig.1.

Rectangular bridge and cantilever structures require
the consideration of other, special boundary conditions.
The Fourier method can be matched to these conditions as
well, see [2].

We have extended this model by the consideration of
free convection cooling, taking into account the heat
transfer by convection on the top and bottom surface of
the membrane. Moreover we modified the original
algorithm also towards considering dissipators inside the
layered structure. The detailed description of these
algorithms can be found in [2].

From heat transfer point of view a special class of
microsystem elements are the parts suspended on thin and



narrow strips. H-shaped membranes and cantilevers with
a narrow neck belong to this class. In these structures the
leads act as heat sinking elements. In the µS-
THERMANAL program we consider them as pseudo-
dissipating elements with negative dissipation. The
algorithm for the exact calculation of these dissipation
values is given in [5].

3. SUNRED: a 2D thermal and electrostatic
simulator

During our work in the thermal simulation of 3D SOI
structures we encountered the problem, that the accuracy
of the applied FEM simulation tool had to be limited
down to an unacceptable value if we wanted to have the
simulation results in a reasonable time. To overcome this
problem we have developed a new dedicated field solver
program SUNRED, which works currently in two
dimensions, but it is expandable to 3D. The applied
method is a finite difference method. The algorithm is the
SUccessive Node REDuction, leading to the acronym
SUNRED.

This tool is designed especially for the fast
calculation of the thermal behavior of arbitrary shape
integrated microstructures. A special requirement was to
calculate on a grid that is fine enough to obtain not only
the temperature distribution but the accurate streamlines
of the heat-flow as well.

An interesting feature of this simulator is that
characteristic methods of three distinct disciplines are
combined in it. These fields are

• the electromagnetic field theory,
• the linear network theory and
• image processing.

Combination of these methods resulted in a very useful
tool.

3.1. The model
The current 2D version of the program treats the

linear heat conduction problems in two dimensions.
Anisotropy can be taken into account. The equation being
solved is
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and in the steady-state case
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This is the 2D form of the well-known Poisson
equation, the mathematical description of many physical
phenomenon. Electrical current-stream fields and
electrostatic potential fields can be described by the same
equation, which means that the program is capable to
solve such problems as well. Thus, investigation of
capacitive sensor and actuator structures can be also
performed with the help of this program.

The investigated area is a rectangle. A dense
equidistant grid is spawned to this area defining a cell
matrix. The suggested grid size is either 128×128 or

256×256 (for a PC, higher resolution can be used on
workstations). A material type is assigned to each cell.
This assignment is performed by constructing an image −
in the sense of the digital image handling methods. Each
pixel of this digital image corresponds to a grid-cell
whereas the material type constituting the cell is coded by
the color of the pixel. Thus, in order to enter a problem
two files have to prepared:

• the “problem-image” which can be in any usual
image format (the suggested format is the BMP),

• the “material-table” assigning different material
parameters to each color.

This method of problem definition provides a very
easy and fast input of complex geometrical arrangements
(using any general picture editing tools). Almost
arbitrarily shaped structures can be investigated,
limitation is coming only from the finite resolution of the
digital image. Real images, e.g. a microscopic image of
some IC structure may also be used as geometry input.

On the edges of the investigated rectangular area
either forced temperature or zero heat-flow can be
prescribed − individually, for any gridpoints of the
boundary. Excitations can be defined in the interior of the
investigated area as well, forcing a given temperature or a
given heat-flux to any cell. Obviously a new “color”
should be introduced for each excitation value in the
problem image.

The solution of Eq.(2) is accomplished using the
method of finite differences, and applying a network
model for the thermal field. The cells of the field are
described by an electrical model. The cells are squares (or
rectangles), with a node in their center (Fig.2a.). Heat flux
can be forced into them − this corresponds to the current
flowing in this node. Forced temperature means the forced
value of the cell node.

Fig.2. Cell, center node and terminal nodes
The boundary between different materials is lying

always on the cell edges. In other words: each cell is
“filled” by a single material. Each cell has four terminals
in the direction of its four neighbors (Fig.2b.). On the
terminals each cell can be described by a 4×4 matrix. This
way the center node is hidden, but knowing the terminal
temperatures the temperature of the center node can be
back-calculated. Fig.2c. presents that the cell shows four
terminals to the outside and the inner node is hidden.

The steady-state model of the cell is shown in Fig.3.
It contains four thermal conductances. The value of these
conductances depend on the thermal conductivity of the
material filling the cell and on the geometry. This basic
cell can be described by an admittance matrix of 4×4 size.



Fig.3. Steady-state circuit models of a single cell.
a.) Current excitation, b.) forced voltage

3.2. The solution algorithm
The solution of the problem is done by the electrical

solution of the whole model network. This raises serious
problems because of the size of this network. Using a grid
of 128×128 lines the model network consists of 32768
nodes. For a 256×256 grid arrangement this number is
131072. Although the corresponding circuit matrix is
extremely sparse the solution of such a big network is a
hard problem.

In order to avoid the troublesome “when to finish the
iteration” problems we have not considered iterative
solutions − only direct methods have been investigated.
Similarly to the idea described in [6], a successive
procedure has been developed for the network reduction.
The essential features of this algorithm are briefly
presented in this paragraph.

Four basic cells can be assembled to form a block or
macrocell as shown in Fig.4a. In other words: a 1st order
cell has been built from four zero-order cells. The four
interior connecting terminals of the cells can be
eliminated; they will not appear in the outside-directed
description.

 

       a.) b.)

Fig 4. Network reduction. a.) Four basic cells will
constitute a 1st level cell, b.) Building a 2nd level cell

Using four 1st level cells we can assemble a 2nd level
cell as shown in Fig.4b. The inner terminals can be
eliminated again.

Continuing this successive construction of higher and
higher level cells we obtain finally the matrix of a single
cell − the terminals of which are lying on the four edges
of the investigated rectangular field. Matching with the
boundary conditions means the solution of this matrix for
the U or I constraints, given individually for the terminals
lying on the boundaries of the investigated field. The

voltages of all the inside nodes can then be calculated by a
successive back-substitution.

Let us present the procedure in terms of the data flow
and arithmetic operations used. The cells are described by
their admittance matrices Y relating to the boundary
nodes and by their inhomogeneous vectors J representing
the excitations on all the inside nodes but reduced to the
boundary nodes. For the 0th level cells shown in Fig.3. Y
and J can be generated by using elementary calculations.
The connection of two cells as shown in Fig.5 is
equivalent to the addition of their Y matrices and J
vectors where the areas of the connected nodes overlap as
shown in Fig.5. as well.

Fig.5. Connection of two cells and the resulting Y
matrix and J vector

The next step is to eliminate the inside (≡connected)
nodes. For sake of better understanding Y and J are
visualized in Fig.6. in a rearranged node order. The first
N nodes are the boundary nodes (that should be kept), M
are the inside nodes that being eliminated. Partitions of Y
are denoted by YA , YB, X and Xt as shown in Fig.6.

Fig.6. Partitions of the admittance matrix

The nodal voltages and nodal currents are represented by
the vectors U and I , respectively. The J, U and I vectors
are partitioned similarly to Y. The linear matrix equation
for the two connected cells is

IA  = YA  ⋅ UA  +    X ⋅ UB   +  JA (4)

IB  =   Xt ⋅ UA  +  YB ⋅ UB  +  JB (5)

Elementary rearrangements of these equations result in
the formula for the reduced admittance matrix

YRED   =   YA   − X⋅ZB⋅Xt (6)

where ZB=YB -1. The new inhomogeneous part is

JRED  =    JA − X⋅ZB ⋅ JB (7)



During the back-substitution step  [UA] → [UA,UB]

        UB = − ZB⋅Xt ⋅ UA − ZB ⋅ JB  . (8)

It is worthy for note that the same matrix is appearing
in (7) and (8) because

ZB⋅Xt = (X⋅ZB)t  . (9)

All the Y matrices are symmetrical. This permits a
saving of about 50% both in storage and in arithmetic
operations.

The description of all cells by their Y matrices
represents a huge amount of data. As the processing is
essentially serial, it is advantageous to store these data
streams in files. Thus the organization of the program is
mainly pipelined: the program segments read one or more
streams from files and writes the results into further files.
This way a quite large number of nodes can be handled on
computers having only limited amount of memory.

The short description of the main program segments
demonstrates clearly the pipelined process:

1. Network reduction. The segment reads the queue
of the Y matrices of nth level cells, reduces them in fours
by using three times Eq. (6) and writes the resulting,
n+1th level Y matrices into a new file. The ZB and X⋅ZB
matrices are calculated and stored into a further file as
well. The number of runs of this segment is log2(K),
where K is the number of the pixels in one edge of the
problem-image.

2. Forward substitution. This segment reads the file
of the X⋅ZB matrices, reads the queue of the J
inhomogeneous vectors of nth level cells, reduces them in
fours by using Eq. (7) and writes the resulted, n+1th level
J vectors into a new file. The number of required runs is
log2(K) again.

3. Solution. This segment uses the uppermost level Y
matrix and J vector and solves the corresponding system
of linear equations, taking into account the actual
boundary parameters.

4. Backward substitution. This segment calculates
the voltages on the internal nodes in a hierarchical top-
down order, by using Eq. (8) and two files: the queues of
the J vectors and the X⋅ZB matrices.

The advantage of this ordering of the calculus lies in
the fact that the first and most time consuming step has to
be repeated only in the case when the investigated
structure has been changed. When the excitations are only
changed, steps 2, 3 and 4 have to be repeated. In the case
when only the boundary conditions are modified repeating
of the steps 3 and 4 is sufficient.

The hierarchical network reduction requires
log2(128)=7 successive steps for the 128×128 grid, 8 steps
for the grid-size of 256 and so on. The detailed analysis of
the t total computing time gives

t = 63.5 P3/2 (t*+)                            (10)
where P is the node number for the whole model

network and (t*+) is the time of one multiplication and one
addition. This time should be compared to the Ordo(P3)
time requirement of a “brutal force” Gauss elimination.

For a 32768 node problem the solution time is only 6
minutes on a 586 PC and 50 sec on a SUN20 workstation.

The program provides both the steady-state analysis
and the transient (time-domain) simulation. In the latter
case the reverse-Euler integration scheme is used. This
method reduces the problem of the transient analysis to a
d.c. solution for each time-step.

A useful feature of the program is that 3D structures
having cylindrical symmetry can be calculated with the
same 2D algorithm. The basic idea of the corresponding
algorithm is a transformation of the heat-conduction
equation. Both the λ heat conductivity and the c heat
capacitance have to be substituted by

λ‘ = λ x  ,    c’ = c x               (11)

in Eq.(2) where x is the radial coordinate. This transforms
Eq.(2) into the heat-conduction equation written in
cylindrical coordinates. This means that by applying (11)
during the generation of the model network, the results
will be valid automatically for the cylindrical structure.

Finally a comparison has to be given with the
ancestor of this algorithm described in [6]. Our realization
provides the advantages that (i) there is no need to handle
the node-incidence matrix of the network, only the
admittance matrix is used, (ii) current sources buried
within the interior of the cells can also be handled, (iii)
the transient simulation can also be realized by using the
described calculation scheme.

3.3. Presentation of the results
The results of the simulation are treated as images

again. The temperature (or potential) fields which are
essentially 2D scalar functions can be considered as black-
and-white images. The brightness of the image points is
proportional to the temperature (or potential) of each
point. The program provides the results in form of digital
images, in the standard BMP image format. Such a
potential image is shown in Fig.7.

Although this image gives a good qualitative view of
the potential field, the potential values can not be read
from this picture. A very basic procedure of the image
processing can help to overcome this problem. This
procedure is the intensity transformation: an arbitrary
btr=f(b) function can be used to map the original b pixel
intensities into the btr brightness values. A set of
appropriately chosen functions offer a rich variety of
presentations for the same temperature (potential) field,
and provide the good quantitative evaluation at the same
time. Fig.8. is an example for this: it is the same image as
in Fig.7. but after a suitable intensity transformation.

The temperature field or potential image is generally
not enough to visualize thermal, electrostatic or streaming
fields. Tracing of the heat-stream lines (or electrical field
lines) is an often encountered requirement. Especially in
the case of temperature fields the streamlines provide an
easy way to “discover” how and where the heat flux is
streaming.

To obtain streamline pictures further image
processing steps are required. The simulator provides the



Fig.7. Grayscale image of a potential field)

Fig.8. Potential or temperature field using a telegraph
signal like intensity mapping.

Jx, Jy components of the J current density vector in form
of two intensity images. These vectors have to be turned
by 90o. This can be made simply by interchanging the two
images and negating one of them:

Gx = Jy               (12)
Gy = - Jx

It can be easily proven that the P(x,y) potential
function of this G field is suitable to trace the streamlines.
The equipotential lines of this P pseudopotential are the
streamlines of the original field. Visualization of these
lines can be proceeded in the same way as in case of the
real potential field.

This pseudopotential can be constructed if and only if
there is no divergence in the J(x,y) vector-field. This
means that the procedure can be applied only on the
divergence-free regions of the field. Pictures generated by
using this pseudopotential are shown e.g. in Figs. 9 and
10.

3.4. Examples
In the first example a 3D stacked submicron CMOS

SOI structure [7] is investigated. The heat is generated in
the upper transistor. The results of the steady-state
simulation are shown in Fig.9. The highly different
thermal conductivity of the silicon and the SiO2 leads to

the surprising fact that the heat stream makes a detour
(see the white arrows) around the SiO2 region.

Fig.9. Heat-flow in a stacked SOI structure
The second example demonstrates how a microphoto-

graph can serve as the input for problem statement. The
electron-microscopic image of the facet of a special laser
diode design [8] is shown in Fig.10a1. Image processing
methods were used to extract the contours of the areas
representing the different materials and to color them
appropriately. The resulting image was used as the input
of the simulation, the result of which is shown in Fig.10b.

   a.)          

    b.)     

Fig.10. Thermal simulation of a laser diode.
a.) microphotograph,   b.) simulation results of the left hand side of
the structure (the isotherms and the streamlines)

In the third example a semiconductor chip mounted
on a multi-layered metal + ceramics substrate is
investigated. The heat-flow is perturbed by an irregularly
shaped cracking and by a cavity at the interface of the two
bottom layers. The steady-state thermal field is
demonstrated in Fig.11. by the heat-flow lines.

                                                       
1 Courtesy of I. Habermajer, TU Budapest.



Fig.11. Heat streamlines in a chip mounting
The transient analysis generates a frame sequence

that can be played as a movie. Three frames of such a
sequence are shown in Fig. 12. Both time and spatial

functions can be extracted from the frame sequence. In
Fig.13. the time functions of the temperature are
visualized referring to 4 prescribed locations.
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Fig.13. Time diagrams for the problem of Fig.11.

            
Fig.12. Three frames from a transient sequence (t= 0.4ms, 5 ms, 156 ms)

4. Conclusions
Two new, fast and easy-to-use thermal simulation

tools have been developed for the accurate thermal
simulation of dedicated microsystem elements and special
3D structures. With the help of the novel 2D-SUNRED
program arbitrarily shaped structures can be thermally
analyzed in minutes, currently in two dimensions. The
development of the 3D version of the program is in
progress. Using the µS-THERMANAL simulator, both the
steady-state and the frequency-domain behavior and even
the accurate dynamic thermal model of microsystem
elements can be obtained.
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