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ABSTRACT

Integrating sphere reflectometers are used in the majority of instruments used for spectral reflectance
measurements of non-specular (scattering) samples. Knowledge of directional-hemispherical spectral reflectance
(and transmittance, in the case of semi-transparent samples) allows one to derive the spectral directional
emittance, which is of considerable practical interest for numerous heat transfer and pyrometric applications. The
indirect method of emittance measurement is commonly used in cases of low emitted flux such as for samples
near or below room temperature. For direct emittance measurement facilities, the indirect method has also been
used for accurate non-contact measurement of sample temperature. Along with a number of advantages for
reflectance and emittance measurement, integrating spheres possess a considerable number of potential sources
of error relating to the characteristics of the sphere and their deviation from ideal behavior. This paper describes
an evaluation of the effects of sphere related error sources on a sphere reflectometer’s performance by means of
a computational model. This effort was undertaken in the framework of a current NIST project to build a facility
employing indirect measurements of spectral directional emittance. A description of the modeling program and
its assumptions are given. Examples of modeling results for several materials and sphere parameters (such as the
wall reflectance and degree of wall coating specularity) and their effects on emittance values are presented and
discussed. A discussion of the developed techniques and conclusions as well as the prospects of their practical
application to design optimization and uncertainty evaluation of integrating sphere reflectometers and
emissometers is presented.

1. INTRODUCTION

Integrating spheres are commonly used for spectral reflectance measurements of non-specular
(scattering) samples. For opaque materials, the directional emittance can be derived from the
directional-hemispherical (or hemispherical-directional) reflectance (indirect method). For transparent
materials an additional measurement of directional-hemispherical transmittance is needed [1]. The
indirect method employing an integrating sphere is especially useful for cases of low emitted flux such
as near or below room temperature. For direct emittance measurement, the indirect method has also
been used in a supplementary role in a non-contact determination of sample temperature [2].

Integrating spheres provide a number of advantages for reflectance and emittance measurement.
Similarly, however, a number of potential sources of error relating to the characteristics of the sphere
and their deviation from ideal behavior can contribute to error in the reflectance, emittance, and
temperature measurement results [3]. A useful approach to evaluation of the effects of these error
sources is to construct a computational model for the sphere and evaluate its performance for realistic
parameter values and various types of samples.

Such a modeling effort was undertaken in support of the current NIST project to develop a spectral
directional emittance characterization facility [4], which will employ an integrating sphere
reflectometer. While the simulation model is applicable for sphere reflectometers of different
geometries, we will limit ourselves to the geometry selected for our emittance measurement system, as
described below.
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2. OBJECTIVES OF WORK

The main objectives of the present work were to develop the method and software for numerical
modeling of integrating sphere radiation characteristics, and use this software code to optimize the
design and to correct for systematic and predictable effects.

Let us first analyze the assumptions implied by the measurement concept. For an ideal reflectometer,
the sample spectral hemispherical-conical reflectance factor R; at temperature 7 and for wavelength

A in the conical solid angle £ can be found from:

R(A2r—>Q1) N

=-1 1
Ry(A2m—>QT,) V' M

where V' is the detector reading, and subscripts 1 and 2 denote sample and reference, respectively. For

a small solid angle © and samples with a smooth bi-directional reflectance distribution function
(BRDF) we can replace the hemispherical-conical spectral reflectance factor R (1,27 — Q,7) with the

hemispherical-directional one R(1,27 — &,T), where the direction @ coincides with the axis of the

conical solid angle © and in the notation a— 5, a and b represent the illumination and collection
geometries, respectively. According to the reciprocity theorem, the hemispherical-directional
reflectance factor R (1,27 —>@,7;) is equal to the directional-hemispherical reflectance

p(A,@—2x,1;). For an opaque sample, according to the energy conservation law, the directional

spectral absorptance o (4,@,7;) can be obtained from
o (2,0,1)=1-p; (4,0 > 27,T;). (2)

Kirchhoff’s law allows us to replace the directional spectral absorptance with the directional spectral
emittance €, (/'1.,0'),?"1) and obtain, taking into account (1) and (2) in terms of known and measured

quantities,
V(A
V(2)

el(;t,m,iq)=1—p2(/1,a‘;—>2n,rl) : 3)

Application of the reciprocity theorem requires uniform and identical hemispherical illumination of
the sample and reference. Hence, the first objective of our work is to model the distribution of the
radiance over the hemisphere above the sample center and the influence of its non-uniformity on the
measured sample reflectance. Another objective is to evaluate the effects of sample and sphere wall
BRDF on the measured reflectance.

Most existing analytical and numerical methods do not allow accurate treatment of the effects of the
sphere wall’s specularity, which could be vital for IR applications where all coatings exhibit some
measurable degree of specularity. The Monte Carlo method, based on the stochastic treatment of
interactions of optical radiation with matter, is becoming widely applied to optical radiation transfer
analysis, including numerical modeling of integrating spheres [5-8]. This method, having no
fundamental restrictions either on system geometry or BRDF of surfaces, has been chosen for the
numerical modeling described herein.
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3. REFLECTOMETER MODEL AND PROGRAM IMPLEMENTATION FEATURES

In this paper the sphere modeling is treated within the framework of geometrical (ray) optics. We
assume that a light source emits unpolarized radiation, or it is depolarized after multiple reflections
inside the integrating sphere. The modeled system (Figure 1) is formed by the internal surface of the
sphere, a flat light source (s), two flat baffles (b), and symmetrically arranged holders (h) with the
sample (1) and the reference (2). The sample and reference are viewed by a detector (a). The letters
and numbers in parentheses identify each sphere element for specification of their dimensions in
Section 4.

;—
Ji Detector

;;' \ Sphere
! Exit Port
f Baffles ‘\
Holder%. QL ff!\( Holder
Sample Source Reference

Figure 1. Computational model of the integrating sphere and the local spherical coordinate system
linked to the sample center. The subscripts are defined in the text.

For elements of the integrating sphere, the specular-diffuse model of reflection with arbitrary
dependencies of specular and diffuse components on incident angle has been used. Due to limitations
of space, only the uniform specular-diffuse model of reflection is presented, according to which both
components do not depend on incident angle, Following Ref. [5], we will characterize each surface by
a value of specularity:

S=p./(ps+Pg)=ps/p. )

where p, and p, are the specular and diffuse components of reflectance; and p is their sum.
The source is assumed to be spatially uniform with angular distribution of radiant intensity defined as
1(6)=Lt17(0)cos" 6, 5
(6)="-1(0) )

where @ is the angle between the direction of observation and the normal to the source surface.

The limited scope of this paper does not permit a full description of the developed Monte-Carlo ray
tracing technique, which will be the subject of another publication to follow in the near future.
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The main problem encountered in numerical modeling of integrating spheres is the time required to
perform the simulations. For instance, the requisite very large number of successive reflections, M,
which can be evaluated by the formula:

—gne| 0¥
M—Ent(lnp], (6)

where p is the sphere wall reflectance, ¥ is an allowable relative uncertainty of the radiance due to
the neglect of high-order reflections, and Ent(x) is the integer part of x . For example, if we need to

compute the radiance of the integrating sphere wall with y = 1073 and wall reflectance p=095, we
should take into account not less than 135 successive reflections. Another cause of slow convergence
of computations, in our particular case, is the relatively small size of the source. It was found
necessary to trace at least 1-107 rays to achieve a 0.1% level of the radiance standard deviation.

4. RESULTS OF NUMERICAL EXPERIMENTS
The geometrical parameters of the modeled sphere as defined in Figure 1 are the following: »=

150 mm; 7, = 26.4 mm; ry, = ry = 25 mm; ryg, = r5s= 9 mm; .= 5 mm; f=17° z, = 147.6 mm; z, =
225.8 mm; zy= 139.9 mm; x,= 7 mm. For both holders p,, = p,, =0.99; §,, =S,,=1.
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Figure 2. Angular distributions of relative radiance of light incident onto sample center for various
angular distributions of light source radiant intensity. A: v=10.5; B: v=1; C: v=2 (See Eq. (5)).
The sphere and baffles reflectance is 0.9, with specularity 0.
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In Figure 2, maps of the computed hemispherical distributions of relative radiance for light incident
onto the sample center, for sources characterized by different indicatrices (power of cosine in Eq. (5),
v =0.5, 1, and 2) are shown. The white elliptical region near the top in each map corresponds to the
conical solid angle subtended by the exit port of the sphere (refer to Figure 1). A small degree of
smoothing is applied which results in the gradient at the edge of the exit port. The darkest region near
(6 =90° ¢ =0°/360°) corresponds to the direction of the center of the baffle. For v =0.5 and 2 the
non-uniformity of the distribution approaches 25% compared to 15% for the Lambertian radiator case
(v =1). Additional studies show that the non-uniformity decreases with increasing sphere reflectance.
And for the Lambertian radiator, the distribution uniformity is affected mainly by the height of the
baffles.

Figure 3 depicts the hemispherical distribution of radiance incident on the sample center for sphere
and baffles reflectance 0.95 and two values of specularity. At § = 0.2 (Figure 3A) the series of valleys
on the surface correspond to images of the exit port after several reflections. A small peak under the
exit port corresponds to the fifth reflection of the light source. At §=0.4(Figure 3B), the pattern
becomes more apparent with the small peaks corresponding to higher order reflections.

Re\aine radiance

oo

Re\aine radiance

5 S SS

Figure 3. Angular distributions of relative radiance of light incident onto the sample center:
A — sphere specularity 0.2; B — sphere specularity 0.4. In both cases the reflectances are 0.95.

Sphere non-uniformity can result in a systematic error that occurs for differing directional scattering
character of the sample and reference reflection. This requires evaluation, and, if possible, correction.
The most evident effect is the difference in loss through the exit port, which represents approximately
1.5% of the sphere wall area. In Figures 4A and B, plots of the calculated sample reflectance versus
sample and sphere wall specularity, respectively, are shown for several values of sphere wall
reflectance. In all cases the sample reflectance is 0.95, and the specularity S = 1 in 4B. For each point
in Figure 4, 107 rays were traced 10 times to find the mean reflectance factor value and its standard
deviation o . For most points, 0.0005 <o <0.0015.

In the purely diffuse sphere wall case of Figure 4A, the deviation of the measured value from the real
one (0.95) for sphere wall reflectance values of 0.95, 0.98 and 0.99 are shown to be linearly dependent
on the sample specularity. The error in the measured sample reflectance is a combination of the exit
port loss and the higher radiance level for the specular direction in comparison to the mean radiance
(as can be seen in Figure 2B). The error is larger for lower wall reflectance because the radiance non-
uniformity increases with decreasing wall reflectance.

The complicated dependence of measured sample reflectance on sphere wall specularity seen in Figure
4B, is determined by several effects that vary in strength as wall specularity is increased.
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Figure 4. Measured sample reflectance as a function of (A) sample specularity and (B) sphere and
baffle specularity for different values of sphere wall reflectance. In (B) the sample p =0.95and S =1.

5. CONCLUSIONS

A software code for the numerical modeling of integrating sphere reflectometers has been developed.
For one important practical configuration, a hemispherical distribution of radiance incident onto the
sample has been computed. Uncertainties and corrections associated with the light source indicatrix
and sphere coating reflectance and specularity have been evaluated. The size of the deviations of the
measured sample reflectance seen in Figure 4 confirm the importance of integrating sphere analysis, as
well as the importance in knowing as much as possible about the scattering characteristics of both the
sphere wall coating and the samples under test. Although only a uniform specular-diffuse model has
been used so far, the developed code allows the use of arbitrary dependencies of diffuse and specular
components on incidence angle. If a physically plausible algorithm for arbitrary BRDF sampling is
made available, the code can easily be modified to add the capability of modeling such surfaces. A fast
and reliable ray tracing technique has been developed that allows modeling of various integrating
sphere-based reflectometers/emissometers for opaque and transparent materials, as well as for the
optimization of extended uniform-radiance calibration light sources that use integrating spheres.

The authors would like to thank the Air Force Metrology Calibration Program, Engineering Division
(AFMETCAL-MLE) for their support.
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