

Hemispherical-directional Integrating Sphere for

High Temperature Reflectance Factor Measurement

Leonard Hanssen, Alexander Prokhorov, and Boris Wilthan

Optical Technology Division
NIST
Gaithersburg, MD 20899
hanssen@nist.gov

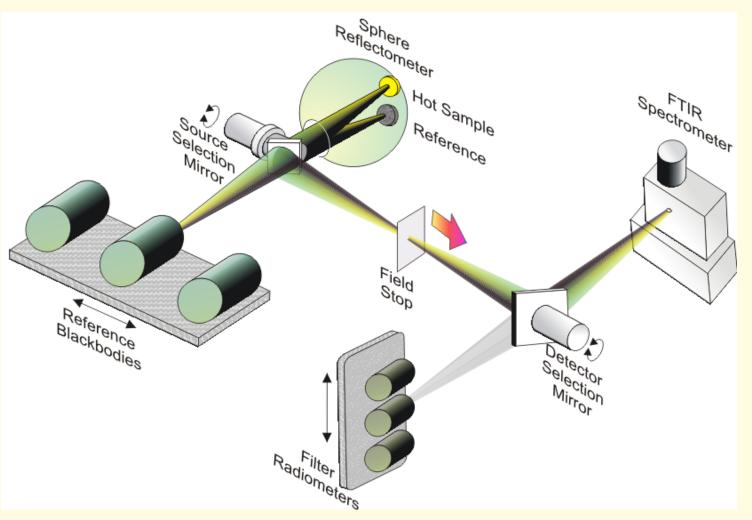
- I. Application: Non-Contact Method for Sample Temperature
- II. Hemispherical-directional Reflectance Factor Sphere Design
- III. Monte Carlo Modeling and Optimization of Sphere Design
- IV. Constructed Sphere & HDRF Performance Results
- V. Application Measurement Results: Emittance & Temperature
- VI. Conclusions

- I. Application: Non-Contact Method for Sample Temperature
- II. Hemispherical-directional Reflectance Factor Sphere Design
- III. Monte Carlo Modeling and Optimization of Sphere Design
- IV. Constructed Sphere & HDRF Performance Results
- V. Application Measurement Results: Emittance & Temperature
- VI. Conclusions

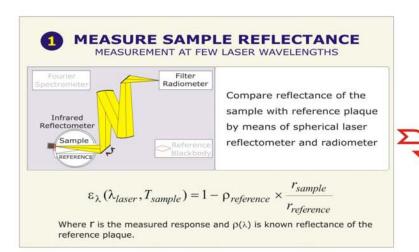
New Capability: Infrared Spectral Emittance

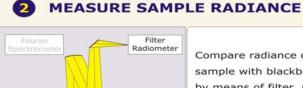
- Compare radiances of samples and reference blackbody source
- Need to know sample and blackbody temperatures
- Sample temperature can be dominant component of uncertainty

$$\varepsilon(\lambda,T) = \frac{V(\lambda,T)}{V_{BB}(\lambda,T_{BB})} \left(e^{\frac{c_2}{\lambda \cdot T}} - 1\right) / \left(e^{\frac{c_2}{\lambda \cdot T_{BB}}} - 1\right)$$


Sample Temperature Measurement

- Sample temperature required for spectral emittance determination
- Our primary method for sample $T \ge 200^{\circ}$ C is non-contact
 - Secondary method of embedded thermocouple for backup/validation
- Method first developed at INRIM (IMGC) Italy:
 - M. Batuello, F. Lanza, and T. Ricolfi, "A simple apparatus for measuring the normal spectral emissivity in the temperature range 600 1000°C", Proc. 2nd Intl. Symp. Temp. Meas. Ind. Sci. (IMEKO TC12), Suhl (GDR), 1984, pp 125-130.
- Uses Near-IR integrating sphere, filter radiometers & reference blackbodies
- Primary advantage: obtain temperature of sample surface area of interest in direct fashion

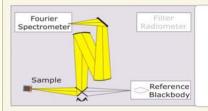



IR Emittance Measurement System

HIGH TEMPERATURE EMITTANCE REALIZATION STEPS

Sample

Compare radiance of the sample with blackbody by means of filter radiometer with known relative response


$$r_{samp} = G \times \int_{\lambda_{O} - \Delta}^{\lambda_{O} + \Delta} R(\lambda) \times \varepsilon_{\lambda}(\lambda, T_{samp}) \times L_{plank}(\lambda, T_{samp}) d\lambda$$

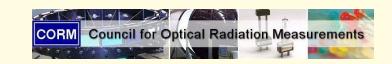
$$R_{B} = G \times \int_{\lambda_{C} - \Delta}^{\lambda_{O} + \Delta} R(\lambda) \times \varepsilon_{BB}(\lambda, T_{BB}) \times L_{plank}(\lambda, T_{BB}) d\lambda$$

Where r is the measured response, $R(\lambda)$ is the responsivity of the radiometer and G is the geometrical factor.

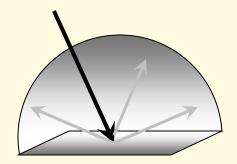
4 MEASURE SPECTRAL EMISSIVITY

Measure sample emissivity, comparing its radiance with blackbody by means of the FT Spectrometer

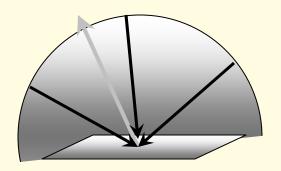
3 CALCULATE SAMPLE TEMPERATURE


Compute TRUE temperature of the sample surface, using:

- data and equations as shown in Step 2,
- emissivity data from Step 1,
- known blackbody temperature;
- filter radiometer spectral response.

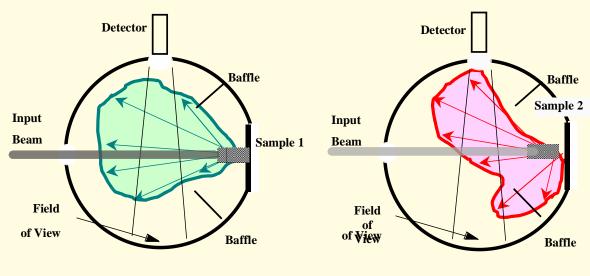


- I. Application: Non-Contact Method for Sample Temperature
- II. Hemispherical-directional Reflectance Factor Sphere Design
- III. Monte Carlo Modeling and Optimization of Sphere Design
- IV. Constructed Sphere & HDRF Performance Results
- V. Application Measurement Results: Emittance & Temperature
- VI. Conclusions



"Diffuse" Reflectance

- Single direction illumination
- Hemispherical collection
- = output flux/input flux
- Requires uniform collection


Hemispherical-Directional Reflectance Factor HDRF

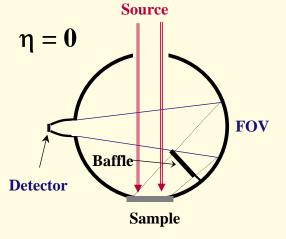
- Hemispherical illumination
- Directional collection (small solid angle)
- = output flux/flux from ideal diffuser output flux/(input flux*proj. solid angle)
- Requires uniform radiance illumination

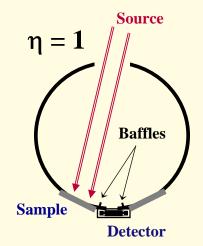
(DHR) Sphere Design for Relative Reflectance Measurements: How to Handle First Reflection from Sample?

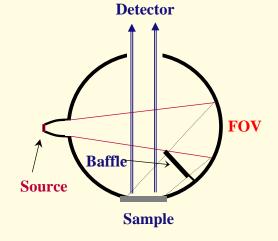
- Design philosophy: treat light reflected from sample and reference in identical fashion
- Effect: Sample scatters light (BRDF) in arbitrary fashion different from reference
- Problem: Detectors often have limited field-of-view (FOV) and stronger response for light within FOV
- Solution: Use baffles to control light interchange between sample/reference and ports/detector field-of-view (FOV)
- Goal: To make throughput to the detector independent of the sample BRDF

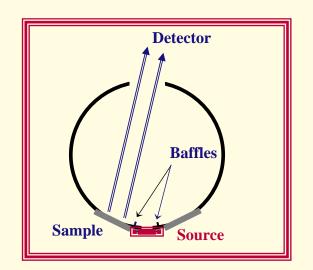
Isotropic Sphere Design Concept*

- Design must treat sample and reference reflected light equally for accurate relative measurements and be independent of scattering distribution (BRDF)
- Conclusion: best designs "force" sample and reference η to be the same
 - Where η is the fraction of reflected light going into the FOV.
 - Three possibilities, $\eta = 0$, $(\eta = 1/2)$, and $\eta = 1$


*K. A. Snail and L. M. Hanssen, "Integrating sphere designs with isotropic throughput", Applied Optics 28 no. 10, 1793 (1989).




Isotropic Sphere Designs


DHR Designs

HDR Designs

- I. Application: Non-Contact Method for Sample Temperature
- II. Hemispherical-directional Reflectance Factor Sphere Design
- III. Monte Carlo Modeling and Optimization of Sphere Design
- IV. Constructed Sphere & HDRF Performance Results
- V. Application Measurement Results: Emittance & Temperature
- VI. Conclusions

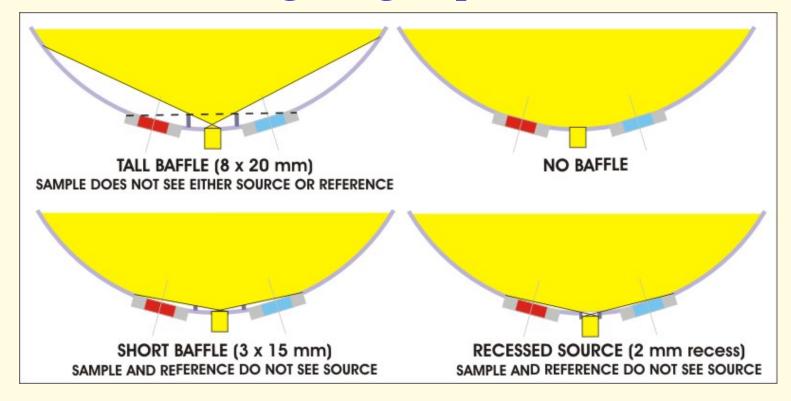
Modeling of HDRF Integrating Sphere Using Monte Carlo Methods*

- Monte Carlo Modeling Software Description:
 - Employs backward ray-tracing, importance sampling, other methods for high speed calculations 10⁷ rays / run
 - Sample & reference have specular/diffuse or real BRDF
 - Source has $Cos^n(\theta)$ form
 - Sphere wall & other ports have specular/diffuse (current version)

• Output Products:

- Hemispherical distributions of spectral radiance falling onto sample center
- Measured spectral reflectance for samples w/ specular-diffuse & real BRDF
- Integrating sphere throughput

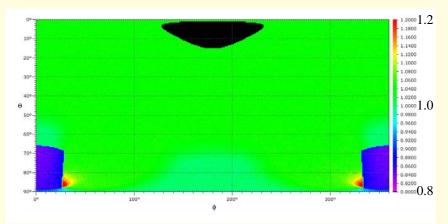
*A. V. Prokhorov, S. N. Mekhontsev and L. M. Hanssen, "Monte Carlo modeling of an integrating sphere reflectometer", Applied Optics 42 no. 19, 2382 (2003).

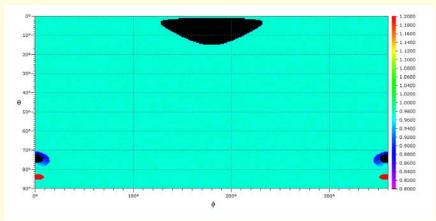

Geometric Parameters of Modeled System

Dimension	Size
Sphere radius	127 mm
Elliptic opening major axes	60 × 46 mm
Source radius	5 mm
Sample and reference radii	9.5 mm
Sample and reference holders radii	17.5 mm
Distance between baffles	30 mm
Baffles height	3 mm
Baffles length	11 mm
Central angle between sample and reference	32°
Viewing angle	10°

HDR Baffling Design Options Modeled

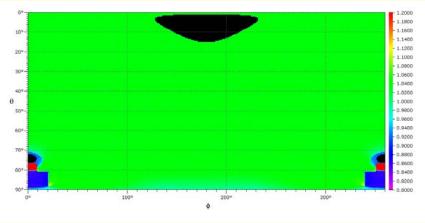
- Goals for evaluation:
 - Best in radiance uniformity
 - Least sensitive to scattering properties of sample

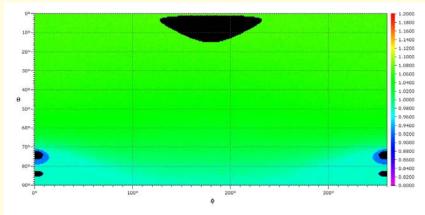




Comparison of Design's Radiance Uniformity

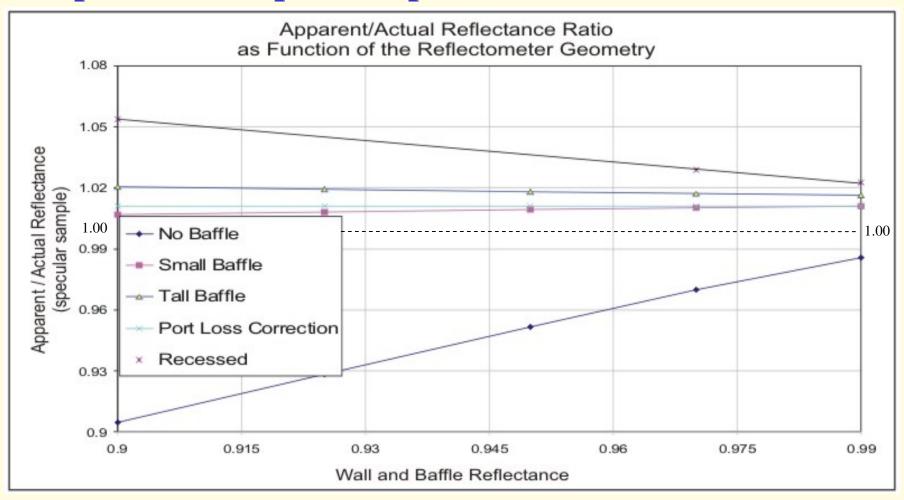
Large Baffle


No Baffle

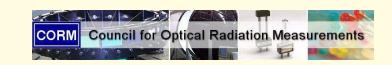


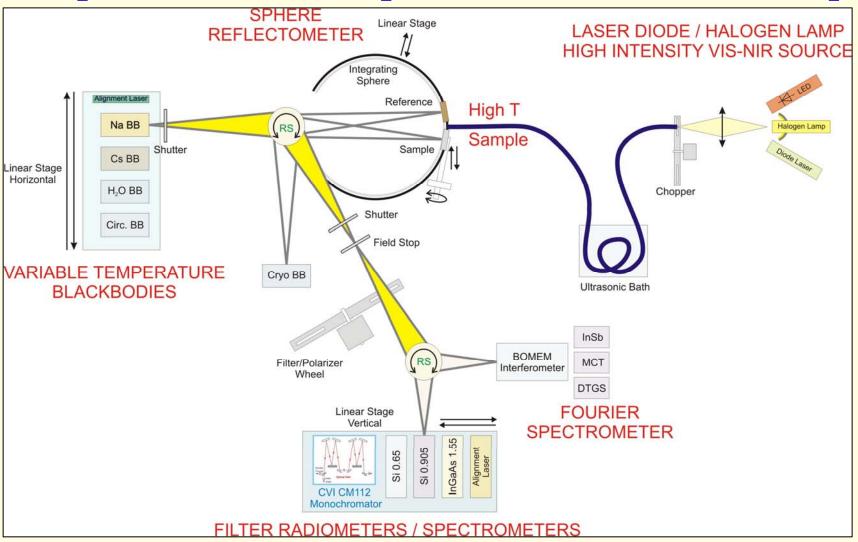
Small Baffle

Recessed Source

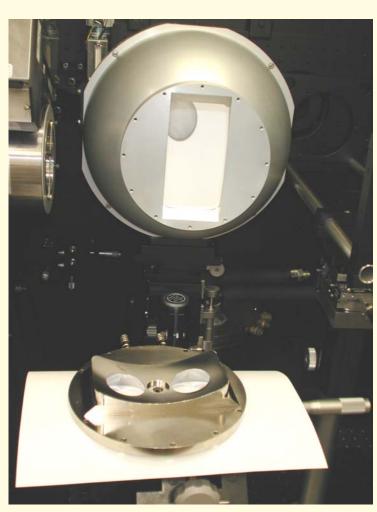

May 7, 2008

17


Effects of Design on Measured Reflectance for a Specular Sample Compared to a Diffuse Reference

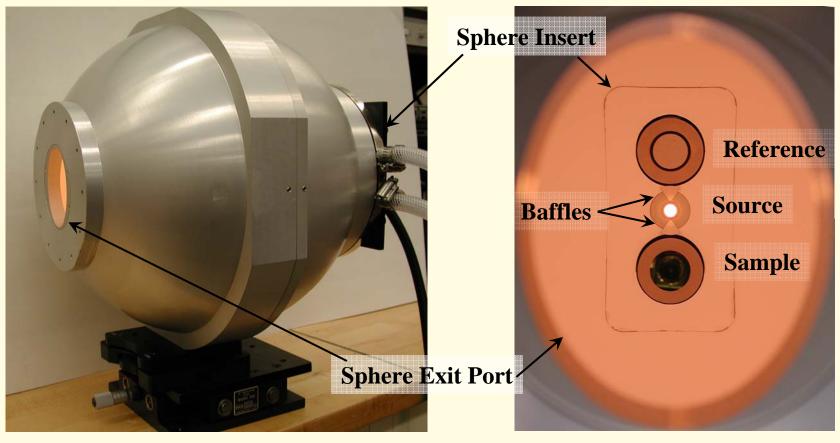


- I. Application: Non-Contact Method for Sample Temperature
- II. Hemispherical-directional Reflectance Factor Sphere Design
- III. Monte Carlo Modeling and Optimization of Sphere Design
- IV. Constructed Sphere & HDRF Performance Results
- V. Application Measurement Results: Emittance & Temperature
- VI. Conclusions

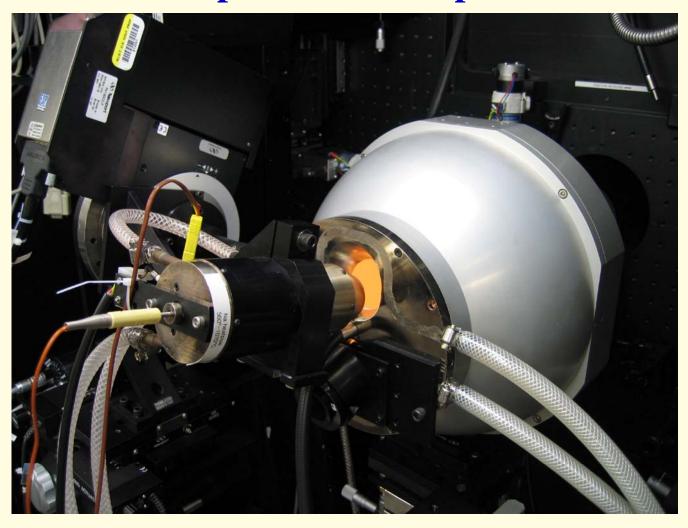


Sample Emittance/Temperature Measurement Setup

DHR Integrating Sphere: Rear View w/ uncoated Insert



- Sintered PTFE on Main Body
- BaSO₄ on insert (future alumina?)
- 250 mm diameter
- Separate insert containing sample,
 reference and source ports and baffles
- Insert water cooled to accommodate samples up to 1400 K
- Source between sample and reference; minimal size baffles for near 2 π illumination of sphere
- Sample, ref. ports accommodate 9° & normal incidence
- Sample, ref. ports accommodate sample & heater assembly

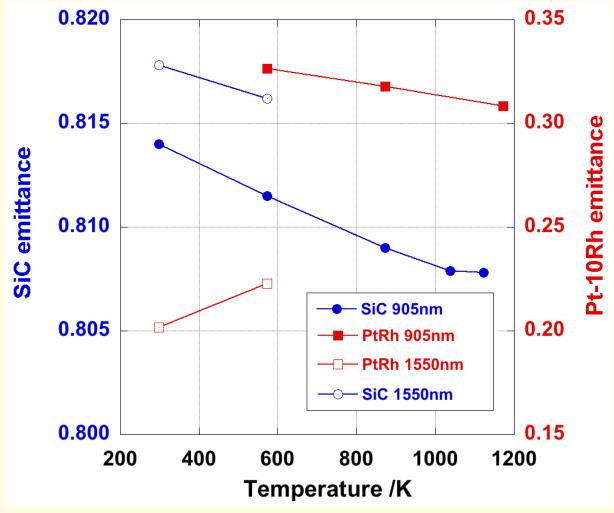

Integrating Sphere for Sample Temperature Measurement

View through Exit Port

Sample Heater & Sphere

Reflectometer Evaluation using Standard Samples*

Wavelength/ nm	Mirrors Ratio	Diff.	Specular/ Diffuse	Calibration data	Diff. %	SiC vs. gold	Calibration data	Diff. %
905	1.0004	0.04	1.0102	1.0100	0.02	0.1929	0.1930	-0.05
1550	1.0007	0.07	1.0165	1.0220	-0.55	0.1934	0.1937	-0.16


- Diffuse sample measurement has greater uncertainty (than specular) due to non-uniformity of sphere
- Expanded uncertainty (k = 2) for calibrated standards ~0.1% 0.5%
- Sphere performance meets design goal

*L. M. Hanssen, C. P. Cagran, A. V. Prokhorov, S. N. Mekhontsev, and V. B. Khromchenko, "Use of a High-Temperature Integrating Sphere Reflectometer for Surface-Temperature Measurements", Int. J. Thermophysics 28 no. 2, 566 (2007).

Emittance Results from Sphere Reflectometer

Emittance Uncertainty Budget

· 			
Uncertainty budget of sample spectral emittance	е		
		Pt-10Rh at	
Reflectometer at 905 nm	Type	6001∕€	SiC at 6001/C
Repeatability of temperature comparison	Α	0.05%	0.05%
Sample reflectance			
Repeatability of reflectance comparison	Α	0.03%	0.03%
Sample			
Alignment	В	0.19%	0.19%
Temperature	В	0.05%	0.00%
Reflectance reference			
Calibration	В	0.09%	0.09%
Alignment	В	0.19%	0.19%
Sphere reflectometer	В	0.20%	0.20%
Radiometer calibration			
Calibration at FP	В	0.01%	0.01%
Interpolation	В	0.01%	0.01%
Alignment	В	0.00%	0.00%
SSE of interface optics	В	0.04%	0.04%
Combined standard uncertainty of spectral			
emittance		0.36%	0.35%
Expanded uncertainty (k = 2)		0.72%	0.70%

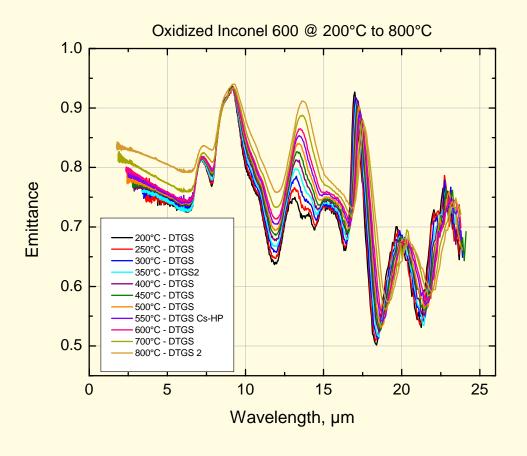
- I. Application: Non-Contact Method for Sample Temperature
- II. Hemispherical-directional Reflectance Factor Sphere Design
- III. Monte Carlo Modeling and Optimization of Sphere Design
- IV. Constructed Sphere & HDRF Performance Results
- V. Application Measurement Results: Emittance & Temperature
- VI. Conclusions

Sample Surface Temperature Uncertainties (using sphere-based method; k=2)

$$\frac{d\varepsilon(\lambda)}{\varepsilon(\lambda)} = \frac{c_2}{\lambda} \cdot \frac{dT(\lambda)}{T(\lambda)^2}$$

Si	C	Pt-1	0Rh
T [K]	$\Delta T[K]$	T [K]	$\Delta T[K]$
573.75	0.14	573.59	0.15
868.56	0.34	872.76	0.34
1038.81	0.49	1172.75	0.61
1123.61	0.57		

Using emittance uncertainties from previous table


Temperature Method Comparison/Validation: Non-Contact (Sphere) vs. Contact (TC)

Material	$T_{TC}[K]$	$oldsymbol{arepsilon}_{tot}$	$T_{w/o\;conv.} \ [\mathrm{K}]$	$T_{w/conv.}$ [K]	T _{radio} [K]	$\Delta T_{(radio-conv)}$ [K]
SiC	298.00	0.800	298.00	298.00		
	573.75	0.800	573.71	573.67	573.38	-0.29
	868.56	0.800	868.34	868.25	867.94	-0.32
	1038.81	0.800	1038.36	1038.25	1038.04	-0.21
	1123.61	0.800	1122.99	1122.87	1122.07	-0.80
Pt- 10%Rh	573.59	0.096	573.58	573.51	572.96	-0.54
	872.76	0.129	872.69	872.54	871.83	-0.71
	1172.75	0.172	1172.45	1171.21	│ 1171.75 <i> </i>	-0.47

- Last column show agreement level of two methods
- Table shows effect of convection loss correction
- Agreement is very good; better than anticipated from uncertainty budgeting

IR Spectral Emittance Example: Oxidized Inconel

- I. Application: Non-Contact Method for Sample Temperature
- II. Hemispherical-directional Reflectance Factor Sphere Design
- III. Monte Carlo Modeling and Optimization of Sphere Design
- IV. Constructed Sphere & HDRF Performance Results
- V. Application Measurement Results: Emittance & Temperature
- VI. Conclusions

Summary & Conclusions

- We have designed, modeled, constructed, tested and applied an HDRF integrating sphere
- The integrating sphere reflectance performance was validated with calibrated samples.
- The implementation of a sphere-based non-contact temperature measurement method was validated by comparison with contact thermometry.
- The sphere-based method:
 - useful for both specular & diffuse materials
 - advantage for elevated temperatures and poorly conducting materials
 - limited at short wavelengths/lower temperatures due to low sample emission
 - can be adapted to transparent materials

