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Abstract
An algorithm of the Monte Carlo method applied to the computation of the spectral and total
effective emissivity of a specular–diffuse, non-isothermal blackbody cavity formed by a
cylindrical tube and a flat inclined bottom is described. The effect of cavity wall temperature
non-uniformity on the cavity radiation characteristics is studied for various combinations of
the affecting parameters.

1. Introduction

In the first part of this work [1], we described the application
of the Monte Carlo method to modelling of the effective
emissivity of an isothermal, specular–diffuse cylindrical
cavity with an inclined bottom. Now we expand the
analysis on such a cavity having a non-isothermal internal
surface.

The effective emissivity of a cavity depends on
its geometric parameters, wall reflectance and diffusity,
temperature distribution over the cavity wall as well as the
conditions of observation. The isothermal approximation
is very useful but not always adequate. Real cavities are
non-isothermal in varying degrees. In order to recall the
existing methods for the calculation of effective emissivities of
isothermal and non-isothermal cavities, we refer the interested
reader to the reviews [2, 3]. The majority of these methods
were developed for axisymmetric cavities with diffuse walls,
so the most common properties of a cylindrical cavity with an
inclined bottom and a non-isothermal radiating surface remain
unexplored. Taking into account the large number of critical
factors and the limited space available, we cannot present an
analysis of all the existing dependences. It is clearly impossible
to provide numerical results for effective emissivities for all
possible temperature distributions, which to a great extent
depend on the design and materials of a particular blackbody
radiator. The scope of this paper is limited to the simple models
used for temperature distributions.

2. Definition of the effective emissivities for a
non-isothermal cavity

The reader is referred to the first part of this work [1] for
the detailed descriptions and definitions of the various forms
of effective emissivity, of which several are used in this
paper. The total and spectral local, directional effective
emissivities for a non-isothermal cavity are defined, as for the
isothermal case, as a ratio of radiances or spectral radiances,
respectively, of an infinitesimal element of a cavity wall in
a given direction to the corresponding quantity of a perfect
blackbody. The principal distinction from the isothermal
cavity case is the fact that there is no unambiguous choice of the
temperature assigned to a non-isothermal cavity to compare it
with a perfect blackbody. That is why a specific temperature
called the ‘reference temperature’, Tref , is usually chosen to
characterize the non-isothermal blackbody. The temperature
of the bottom centre (see, for instance, [2, 4, 5]) is suitable for
selection as Tref .

The local, directional spectral effective emissivity for a
non-isothermal cavity in a non-refractive environment can be
written in the form

εe(λ, �ξ, �ω, Tref) = Lλ(λ, �ξ, �ω)

Lλ,bb(λ, Tref)
, (1)

where Lλ and Lλ,bb are, respectively, the spectral radiance
of a cavity with a reference temperature Tref , at a point
�ξ , a wavelength λ and in a direction �ω, and that of a

0026-1394/10/010033+14$30.00 © 2010 BIPM and IOP Publishing Ltd Printed in the UK 33

http://dx.doi.org/10.1088/0026-1394/47/1/005
mailto: leonard.hanssen@nist.gov
http://stacks.iop.org/Met/47/33
Alexander
Typewritten Text
www.virial.com



A V Prokhorov and L M Hanssen

perfect blackbody, for the same temperature, wavelength and
direction. The denominator in equation (1) can be computed
by Planck’s law:

Lλ,bb(λ, Tref) = c1

π · λ5[exp(c2/(λ · Tref)) − 1]
, (2)

where c1 = 3.741 771 18(19) × 10−16 W m2 and c2 =
1.438 775 2(25) × 10−2 m K are the first and second radiation
constants, respectively [6].

Integration over the entire spectrum gives the directional
total effective emissivity as a ratio of corresponding radiances.
One can write, using the Stefan–Boltzmann law,

εt,e(�ξ, �ω, Tref) = πL(�ξ, �ω)

σT 4
ref

, (3)

where L is the radiance of a cavity wall at a point �ξ in a
direction �ω; σ = 5.670 400(40) × 10−8 W m−2 K−4 is the
Stefan–Boltzmann constant [6].

Since the choice of Tref is arbitrary, the effective emissivity
of a non-isothermal cavity is a function of this temperature. It
is easy to show that

εe(λ, Tref) = εe(λ, T ′
ref)

Lλ,bb(λ, T ′
ref)

Lλ,bb(λ, Tref)

= εe(λ, T ′
ref)

exp(c2/λT ′
ref) − 1

exp(c2/λTref) − 1
(4)

and

εt,e(Tref) = εt,e(T
′

ref)
Lbb(T

′
ref)

Lbb(Tref)
= εt,e(T

′
ref)

(
T ′

ref

Tref

)4

, (5)

where Lbb is the radiance of a perfect blackbody, Tref and T ′
ref

are two arbitrarily chosen reference temperatures.
The effective emissivity of a non-isothermal cavity can

be less than, equal to or greater than unity, depending on the
choice of reference temperature and the actual temperature
distribution. But it is clear that the choice of the reference
temperature does not affect the emitted radiance and spectral
radiance of a cavity.

By analogy with the first part of this work [1], it is possible
to introduce the other types of effective emissivity which can
be computed by averaging over the spectral, spatial and angular
domains.

3. Background radiation effects

The approximation of an isothermal cavity implies a non-
radiating environment. However, this assumption is valid
only if the temperature of a blackbody source is much higher
than that of the surrounding environment. A real ambient
background always has a temperature greater than absolute
zero. Therefore, it must emit thermal radiation that irradiates
the aperture of a cavity. After multiple reflections inside a
cavity, this radiation together with the cavity’s own thermal
radiation can reach the detector. This effect is especially
significant for low-temperature blackbodies with moderate
values of effective emissivity. Since the spectral, spatial

and angular distributions of background radiation are usually
unknown, the simplest case of isotropic blackbody radiation
that corresponds to a background temperature Tbg can be
considered, i.e. every point of a virtual surface subtending
the cavity opening is considered as a blackbody source with
the temperature Tbg and obeys the laws of Planck, Stefan–
Boltzmann and Lambert. We assume that it is possible to
neglect the radiation exchange between the cavity and the
detector, and that the detector does not distort the isotropy
of the background radiation.

Let us consider an isothermal cavity at a temperature T0

with an effective emissivity εe determined for the case of a
non-radiating background and some collecting geometry of
the cavity radiation determined by the detection system. The
effect of an isotropic background at a temperature Tbg can be
accounted for by the equation:

ε′
t,e(T0, Tbg) = εe + (1 − εe)

(
Tbg

T0

)4

(6)

for the total effective emissivity and

ε′
e(λ, T0, Te) = εe + (1 − εe)

exp(c2/λT0) − 1

exp(c2/λTbg) − 1
(7)

for the spectral effective emissivity.
Note that the spectral effective emissivity becomes

wavelength-dependent even for an isothermal cavity with grey
internal surfaces as long as the temperatures of the cavity and
the environment are different. The addends in equations (6)
and (7) (correction terms for background radiation) vanish
when Tbg � T0. For a non-isothermal cavity, due to
the additivity of radiant fluxes, the correction terms for the
background radiation remain the same—we only need to know
the effective emissivity of an appropriate isothermal cavity
determined for a non-emitting environment:

ε′
t,e(Tref , Tbg) = εt,e(Tref) + (1 − εe)

(
Tbg

Tref

)4

(8)

for the total effective emissivity and

ε′
e(λ, Tref , Tbg) = ελ,e(λ, Tref) + (1 − εe)

exp(c2/λTref) − 1

exp(c2/λTbg) − 1
(9)

for the spectral effective emissivity.

4. Monte Carlo ray-tracing algorithm for a
non-isothermal cavity

Our algorithm employed for the numerical modelling of a non-
isothermal cavity is similar to that used in the first part of this
work [1] for an isothermal cavity. The backward (inverse) ray-
tracing technique is also applied, i.e. every ray begins at the
observation point outside the cavity, passes through its aperture
and undergoes multiple reflections from the cavity’s internal
wall. The temperature distribution is specified by its values
at the nodes of a one- or two-dimensional grid superimposed
on the cavity radiating surface. We assume that there is
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Figure 1. Model of a cavity with an inclined bottom and model of the temperature distributions used for computations.

no background radiation, i.e. Tbg = 0 K (if this is not true,
corresponding corrections can be made at the post-processing
stage). For simplicity, the optical properties are assumed to be
spatially uniform over the cavity radiating surface.

The radiance of a ray, which is observed from outside the
cavity in the forward direction is equal to

L = L1 + ρ(L2 + ρ(L3 + · · · + ρLM)) =
M∑

k=1

Lkρ
k−1, (10)

where the index k varies from 1 to the number of reflections M

in the ray trajectory, ρ = 1 − εt is the cavity wall reflectance,
εt is its total emissivity and Lk, k = 1, 2, . . . , M , are the
radiance values of the thermal radiation emitted by the cavity
wall at the points of successive reflections, i.e. L1 = εtσT 4

1
corresponds to the radiation that propagates along the direction
of observation and reaches the observation point directly (with
no reflections), L2 = εtσT 4

2 corresponds to the radiation that
reaches the observation point after one reflection, and so forth;
Tk, k = 1, 2, . . . , M are the temperatures at the corresponding
points.

The analogous expression for spectral radiance is

Lλ = Lλ,1 + ρ(λ)(Lλ,2 + ρ(λ)(Lλ,3 + · · · + ρ(λ)Lλ,M))

=
M∑

k=1

Lλ,kρ
k−1(λ), (11)

where ρ(λ) = 1 − ε(λ) is the cavity wall spectral
reflectance at the wavelength λ, ε(λ) is its spectral emissivity,
Lλ,k, k = 1, 2, . . . , M , are the spectral radiance values of
the thermal radiation emitted by the cavity wall at the points
of successive reflections for the corresponding temperatures
Tk, k = 1, 2, . . . , M .

The value of the temperature at a point of successive
reflection can be computed by interpolation between the nodes.
The following time-saving technique was applied. The spectral
radiance values for a given set of discrete wavelengths were
computed simultaneously. For each reflection, the spectral
radiance of a ray was computed for every wavelength from
this set, for which purpose the corresponding set of spectral
reflectances for these wavelengths was assigned to the cavity
surface. In other words, the same ensemble of trajectories was
used for all wavelengths.

The algorithm used for non-isothermal cavities to
determine the type (specular or diffuse) and direction of
reflection is the same as was used for the isothermal case.
Unlike in the isothermal cavity case, it is impossible to specify
a criterion of ray truncation common for all cavities and all
temperature distributions. Hence backward tracing of a ray
ends only if this ray escapes the cavity through its aperture.
The ray tracing is repeated N times, where N is a sufficiently
large number of random trajectories.

We can write the estimates for the total and spectral
effective emissivities of a non-isothermal cavity in the form

εe,t(Tref) = εt

NT 4
ref

N∑
i=1

Mi∑
k=1

ρk−1T 4
k (12)

and

εe,λ(λ, Tref) = ε

N

(
exp

(
c2

λTref

)
− 1

)

×
N∑

i=1

Mi∑
k=1

ρk−1

exp(c2/λTk) − 1
, (13)

where Mi is the number of reflections in the ith trajectory.

5. Initial data for modelling

We consider a cylindrical cavity with an inclined flat
bottom. In order to reduce the number of geometrical
parameters, we restrict our analysis to a cavity without a
diaphragm and assume that its radius Rc = 1 throughout
this paper. The cavity’s complete length is H as shown
in figure 1. The inclined bottom extends from zmin to
−zmin. We considered the following parametric family of one-
dimensional temperature distributions:

T (z) =



Tb, if zmin � z � zb,

Tb +
Tb − Ta

zb − zmax
(z − zb), if zb < z � zmax,

(14)

where zb is a parameter. We assumed Tb � Ta, because
the temperature in real-world cavity radiators, of the shape
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Figure 2. Distributions of the local normal effective emissivity over the aperture of a cavity with Rc = 1, H = 8, β = 30◦, ε = 0.7 and
D = 0. The top right plot is for an isothermal cavity; the lower plots are for the non-isothermal cavity: left-hand column is for λ = 0.65 µm
and right-hand column is for λ = 1.5 µm. Ta = 1000 K, Tb = 990 K, Tbg = 0 K. The results for three values of zb are arranged into three
rows. Due to symmetry, only the right-hand halves of the distributions are shown. The top left plot shows the temperature distributions used.

considered, typically decreases towards the aperture due to an
increase in the radiative and convective heat loss in proximity
to the opening. The cavity is isothermal if zb = zmax.

The cavity radiating surface is assumed to be spatially
uniform and grey (having wavelength-independent optical
properties). As in the first part of this work [1], we use the
uniform specular–diffuse model of reflection, which presumes
that (i) the surface emits diffusely (according to Lambert’s
law), with an emissivity ε (for a grey surface, ε(λ) = εt = ε

and ρ(λ) = ρ); (ii) the directional-hemispherical reflectance
ρ = 1 − ε does not depend on the incidence angle and is a
sum of two components—specular ρs and diffuse ρd; (iii) the
diffusity of a surface, defined as D = ρd/ρ, does not depend
on the incidence angle.

We also assume the validity of the ray optics
approximation, no diffraction effects and full depolarization
of the optical radiation due to multiple reflections inside a
cavity.
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Figure 3. Distributions of the local normal effective emissivity over the aperture of a cavity with Rc = 1, H = 8, β = 30◦, ε = 0.7 and
D = 0. Ta = 1000 K, Tb = 990 K, Tbg = 0 K. The left-hand column is for the spectral effective emissivity at λ = 10.6 µm and the
right-hand column is for total effective emissivity. The results for three values of zb are arranged into three rows.

6. Distribution of the local normal effective
emissivity

It was shown in the first part of this work [1] that the distribution
of the local normal effective emissivity over the aperture of an
isothermal cavity with an inclined bottom and purely specular
walls is non-uniform but forms zones of complicated shapes.
The diffuse component of reflection smoothes this non-
uniformity. The influence of the temperature non-uniformity
on the distribution of the normal effective emissivity for a
purely specular (D = 0) cavity with H = 8, β = 30◦ and
an emissivity of its internal surface ε = 0.7 is shown in
figure 2 and figure 3 for Tref = Tb = 1000 K, Ta = 990 K
and Tbg = 0 K.

The temperature distributions used for calculations are
shown at the top left of figure 2. A three-dimensional view of
the local normal effective emissivity distribution for isothermal
cavity (zb = zmax = 6.2679) is depicted at the top right. In the

same figure, the distributions of the normal spectral effective
emissivity for three values of zb (−1.7320, 0.1321 and 1.4679)
and two wavelengths (0.65 µm and 1.5 µm) are arranged in
rows and columns, respectively. Distributions of the normal
spectral effective emissivity at 10.6 µm and of the total normal
effective emissivity for the same values of zb are arranged
in the same manner in figure 3. For the cavity with the
geometrical parameters specified above, zmin = −1.7320. All
the three above-mentioned values of zb belong to the interval
[zmin, −zmin]. The temperature non-uniformity of a part of
this interval (i.e. of the part of a cavity bottom) leads to a
near-linear decrease in the local normal effective emissivity
on this part. In comparison with this decrease, the relief
of the local normal effective emissivity distribution on the
isothermal part of the bottom becomes imperceptible. When
zb /∈ [zmin, −zmin], the influence of the temperature non-
uniformity is practically unobservable. This is due to the fact
that, for a cavity with β = 30◦, for all incoming rays that are
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Figure 4. Distributions of the local normal effective emissivity over the aperture of a cavity with Rc = 1, H = 8, β = 30◦, ε = 0.7 and
D = 1. Ta = 1000 K, Tb = 990 K, Tbg = 0 K. The top plot is for the isothermal cavity. Below, the left-hand column is for the spectral
effective emissivity at λ = 1.5 µm and the right-hand column is for the total effective emissivity. The results for three values of zb are
arranged into three rows.

parallel to the cavity axis, after first reflection from the inclined
bottom the points of all further reflections are contained within
the interval [zmin, −zmin].

For a diffuse cavity with the same parameters, the
behaviour is different. The influence of temperature
non-uniformity on the distribution of the normal effective
emissivity for a purely diffuse (D = 1) cavity with H = 8,
β = 30◦ and an emissivity of its internal surface ε = 0.7, is

shown in figure 4 for Tref = Tb = 1000 K, Ta = 990 K and
Tbg = 0 K. A three-dimensional view of the distribution for an
isothermal diffuse cavity (zb = zmax = 6.2679) is depicted at
the top of figure 4. This distribution was computed at the nodes
of a 101 × 201 rectangular grid, which lie inside a unit half-
circle. For every node, 105 rays were traced. The apparent
‘roughness’ of a plotted surface that represents the effective
emissivity distribution is a result of the random uncertainty of
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Figure 5. Backward ray tracing in a cavity with Rc = Ra = 1, H = 8, β = 58◦ and D = 0, performed for three rays that lie on the cavity’s
plane of symmetry.

Figure 6. Distributions of the local normal spectral effective emissivity at λ = 1.5 µm for a cavity with Rc = 1, H = 8, β = 58◦, ε = 0.7,
D = 0 and four values of zb. Ta = 1000 K, Tb = 990 K, Tbg = 0 K.

the stochastic method with a standard deviation s = 2 × 10−5.
In general, the value of s varies from almost 0 for a purely
specular cavity (this is the case of deterministic reflections;
the random uncertainty is associated only with the Monte
Carlo integration over the aperture) to 3 × 10−4 for a ‘nearly’
black specular–diffuse cavity (having an effective emissivity of
about 0.99). The distributions of the normal spectral effective
emissivity at 1.5 µm and of the total normal effective emissivity
for three values of zb (−1.7320, 0.1321 and 1.4679) are
shown in figure 4. When the cavity’s bottom is isothermal
(zb � 1.7320), the distribution’s shape is minimally affected
by the cylindrical section’s temperature non-uniformity, but the
span of the distribution’s non-uniformity slightly decreases as
zb increases. The linear temperature drop along the part of the
inclined bottom leads to an almost linear decrease in effective
emissivity on the bottom’s non-isothermal part.

For the purely specular cavity with H = 8 and β = 58◦,
the points of consecutive reflections are distributed along the
cylindrical wall. The inverse ray tracing of three rays that lie
in the cavity’s plane of symmetry is displayed in figure 5.

The plots in figure 6 present the distributions of the normal
spectral effective emissivity at 1.5 µm of a non-isothermal
specular (D = 0) cavity with H = 8, β = 58◦ and an
emissivity of the internal surface ε = 0.7. The cavity with
these geometrical parameters has zmin = −0.6249. Thus
zb = 0.1751, 0.9751 and 2.5751 correspond to the cases of an
isothermal bottom. However, even for these values of zb, the
temperature non-uniformity of the cylindrical wall distorts the
normal effective emissivity distributions. This appears as a
series of overlapped areas, in which the effective emissivity
decreases continuously. Every area has its own slope that
corresponds to a certain number of consecutive reflections.
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Figure 8. Average normal spectral effective emissivity as a function of zb for two cavities with Rc = 1, H = 8, and ε = 0.7; β = 30◦ and
58◦, for D = 0, 0.5 and 1, for several values of λ; Tref = Tb = 1000 K, Ta = 990 K and Tbg = 0 K.
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Figure 9. Average normal spectral effective emissivity of a cavity with Rc = 1, β = 30◦, H = 8 and ε = 0.7, for D = 0, 0.5 and 1, for
several values of zb; Tref = Tb = 400 K, Ta = 399 K, Tbg = 0 K and Tbg = 300 K.
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If nearly the entire bottom becomes non-isothermal (zb =
−0.6248), the distribution looks like an inclined plane, the
slope of which is primarily determined by the non-uniformity
of the bottom temperature.

The results, presented in figures 2–4 and 6, show that the
non-uniformity of the local effective emissivity distribution
decreases as the wavelength increases. The total effective
emissivity has an in-between value, nearer to that for the long-
wave edge of the spectral range considered.

7. Average normal effective emissivity

We modelled the average normal effective emissivity by
inverse tracing of the rays that are parallel to the cavity axis
and uniformly distributed over the aperture. The computed
dependences of the normal spectral effective emissivity on
wavelength for two cavities with the bottom inclination angles
of 30◦ and 58◦ are shown in figure 7. The other parameters
of both cavities are H = 8, ε = 0.7. The results presented in
figure 7 are obtained for D = 0, 0.5 and 1 and for 11 values
of zb, uniformly distributed on the interval [zmin, zmax]. The
thick solid lines are for the corresponding isothermal cavity
and non-emitting environment cases. The drop in the normal
spectral effective emissivity in the short-wave spectral range
for a cavity with β = 30◦ is greater than that for a cavity with
β = 58◦ because the extent of its bottom in the z-direction is
greater, and this leads to a greater temperature non-uniformity
of its projection onto the plane that is normal to the cavity axis.
However, in the case of D = 0, the curves for a cavity having
β = 30◦ coincide with the line for the isothermal cavity as
soon as zb becomes greater than −zmin because all the points
of reflection are concentrated in the interval [zmin, −zmin]. The
curves of the normal spectral effective emissivity for both
cavities become asymptotic to that of the isothermal cavity
when the wavelength increases.

The same data are presented in figure 8 as a function
of zb, with the wavelength as a parameter of the family of
curves. These dependences are homomorphous but differ in
their numerical value.

In order to check equation (9), we performed a direct
simulation of the influence of the radiating environment. For
this purpose, we considered the backward traced ray that
left a cavity as an incident ray having the spectral radiance
computed by Planck’s equation for the given wavelengths
and for the background temperature Tbg. We obtained very
good agreement with the effective emissivities computed using
equation (9).

For comparison, the results of the modelling for Tref =
Tb = 400 K, Ta = 399 K; Tbg = 0 K and Tbg = 300 K
are arranged in two columns in figure 9. The influence of
the background temperature on a purely specular cavity with
β = 30◦ is minimal because the backward traced ray undergoes
at least five reflections until it escapes a cavity. Thus, its initial
radiance will be multiplied by ρ5 (or smaller). The diffuse
component of reflection allows some of the rays to leave the
cavity through its aperture after each reflection. This leads
to the increase in the normal spectral effective emissivity in
the long-wave range, so its value can exceed the level of the

Figure 10. Plot of the function E(λ) defined by equation (10).

normal effective emissivity of the isothermal cavity computed
for Tbg = 0 K. Let us consider the function

E(λ) = exp(c2/λTref) − 1

exp(c2/λTbg) − 1
. (15)

The plot of the function E(λ) is shown in figure 10 for
Tref = 400 K and Tbg = 300 K. The graph of E(λ) grows
linearly in the spectral range from about 4 µm to approximately
10 µm. This explains the nearly linear increase in the spectral
effective emissivity in this wavelength range in the plots of the
right-hand column in figure 9.

8. Hemispherical effective emissivity

To simulate the uniform hemispherical irradiation of the cavity
opening, which is necessary for backward ray tracing, we
closed the cavity opening with a virtual black disc that is a
Lambertian source of initial rays but has zero temperature. We
considered cavities with H = 8, β = 30◦, ε = 0.7; Tref =
1000 K, Tbg = 0 K, Tb = 1000 K and Ta = 990 K. The
left-hand column in figure 11 shows the dependences of the
hemispherical spectral effective emissivity on wavelength for
three values of the diffusity D and several values of the
parameter zb of the temperature distributions family. The
right-hand column in figure 11 displays the dependences of
the hemispherical spectral effective emissivity on zb for three
values of D and several wavelengths. These plots can be
compared with those in the left-hand columns in figures 7
and 8 for the normal effective emissivity of the same cavity.
One can see that the values of the hemispherical effective
emissivity are always lower than the corresponding values of
the normal effective emissivity. Hemispherical values are more
sensitive to the temperature non-uniformity than the normal
ones. For the same cavity but with β = 58◦, the curves of the
hemispherical effective emissivity were also obtained. They
are qualitatively similar to the curves for the β = 30◦ case and
differ only in their numerical values.

9. Practical application

In order to demonstrate the practical application of the
algorithm and computer code developed, we computed the
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Figure 11. Hemispherical effective emissivities of the cavity with Rc = 1, β = 30◦, H = 8 and ε = 0.7, for D = 0, 0.5 and 1;
Tref = Tb = 1000 K, Ta = 990 K and Tbg = 0 K. In the left-hand column: dependences on λ for several values of zb. In the right-hand
column: dependences on zb for several values of λ.

effective emissivity of a cavity which is recommended by the
European standard on clinical thermometers as an ‘example for
suitable design of a black body radiator’ [7] for the testing of
clinical infrared ear thermometers. This cavity is a cylinder
with an inclined flat bottom and a flat diaphragm. The

parameters of the cavity are the following: Rc = 19.5 mm,
Ra = 5 mm, H = 105 mm and β = 30◦. A diffusely
reflecting (D = 1) black paint of spectral emissivity greater
than 0.95 in the wavelength range from 8 µm to 15 µm is
recommended for the cavity’s internal surface coating. The
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Figure 12. Conical spectral effective emissivities of the blackbody for calibration of the infrared ear thermometers as a function of zb for six
values of the conical FOV apex angle: 0◦, 20◦, 40◦, 60◦, 80◦ and 100◦. Blackbody cavity parameters are conformed to the European
Standard [7]: Rc = 19.5 mm, Ra = 5 mm, H = 105 mm and β = 30◦; ε(λ) = 0.95 for 8 µm < λ < 15 µm, D = 1. Tref = Tb = 310 K,
Ta = 309.98 K, Tbg = 296 K.

radiating cavity is immersed in a water bath at temperatures
from 15 ◦C to 45 ◦C. Even if we consider the water inside
the bath isothermal and eliminate convective heat transfer
from the cavity’s internal surface, it will be non-isothermal
due to the difference in radiation heat losses of areas at
different distances from the cavity’s aperture. We adopted
the value of 20 mK for the temperature non-uniformity that

was used in [8]. However, differently from [8], we used the
family of temperature distributions in the form represented
by equation (14) with the parameter zb instead of the linear
temperature distribution that was used in [8]. The other
initial data were the following: Tref = Tb = 310 K, Ta =
309.98, Tbg = 296 K. According to [7], the calibration of the
ear thermometer is performed by the insertion of its probe end
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into the aperture opening of the cavity. Different types of ear
thermometers have different angular fields-of-view (FOVs). In
order to evaluate the effect of FOV on the effective emissivity
of a non-isothermal cavity, we performed the modelling for
various FOVs from 0◦ to 100◦. We assumed that the base radius
of a conical FOV coincides with the aperture radius. Since we
had no data on the ear thermometer’s probe end emissivity, we
assumed that the probe end radiates as a perfect blackbody at
the background temperature Tbg. If the sensor’s emissivity is
known, the corrections for it and for the radiation heat exchange
between the sensor and the cavity can be computed as this
was done in [9]. A part of the computed dependences of
the conical spectral effective emissivities on zb is presented
in figure 12 for six values of the conical FOV apex angles.
Each plot was obtained by tracing 106 rays. The absolute
standard deviation of random uncertainty in the determination
of effective emissivity is less than 5 × 10−6.

The first plot in figure 12 corresponds to the normal
effective emissivities averaged over the cavity aperture
(FOV = 0◦). All of the plots presented in figure 12 show that
due to the low value of cavity’s wall reflectance (ρ = 0.05), the
effective emissivity is only slightly affected by the temperature
non-uniformity of a cavity portion that is out of FOV. The right-
hand edges correspond to the isothermal cavity at 310 K. The
left-hand edges correspond to a linear temperature decrease
from 310 K to 309.98 K towards the cavity opening.

The spectral emissivities at shorter wavelengths are more
sensitive to the temperature variations than those at longer
wavelengths. In figure 12, the maximal difference in the
conical effective emissivity (0.999 82 for FOV = 0◦ and
0.999 61 for FOV = 100◦) corresponds to the wavelength
of 8 µm and entirely non-isothermal cavity. Elementary
calculations show that such a difference in effective emissivity
leads to a difference in radiance temperatures at 8 µm of
about 10 mK.

10. Conclusion

We have considered some features of non-isothermal specular
cavities with an inclined bottom. Our analysis has been
performed in the framework of ray optics and the specular–
diffuse model of reflection. The Monte Carlo algorithm that
uses backward ray tracing is applied to non-isothermal cavities
whose one-dimensional temperature fields were modelled
using a one-parameter piecewise-linear family of distributions.

The distributions of the spectral and total local normal
effective emissivity over the cavity aperture were calculated
and the results were analysed. It is shown that the extent to
which the distribution of local normal effective emissivity is
affected by the temperature non-uniformity of the cylindrical

part of a cavity is considerably determined by the diffusity of
its wall and the bottom inclination angle.

The average normal and hemispherical effective emis-
sivities were computed as functions of the wavelength and
the parameter zb of a family of the temperature distributions.
The effect of background temperature on the cavity’s effective
emissivity is evaluated.

As a practical example, the dependences of the effective
emissivities on the apex angle of the conical FOV of the
radiation thermometer were calculated for a blackbody cavity
which has parameters recommended by the European Standard
[7] for the calibration of infrared ear thermometers.

It should be remembered that polarization can play an
important role in the radiation transfer inside the cavity,
especially with specularly reflecting walls. Unlike an axially
symmetric cavity, a cavity with an inclined bottom has
no axial symmetry; the polarization of the emitted and
reflected radiation could be incompletely suppressed after
multiple reflections, so that the exiting radiation could be
polarized. In addition, it should be noted that the specular–
diffuse model of reflection is no more than a simple and
convenient approximation of the real angular characteristics
of the reflected radiation. The radiation characteristics of a
cavity with an inclined bottom and real optical properties of
the cavity wall require further study.
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