

High temperature oxide melt solution calorimetry of PrO₂ and Pr₆O₁₁

Sergey V. Ushakov and Alexandra Navrotsky

Thermochemistry Facility, Department of Chemical Engineering and Materials Science University of California at Davis, Davis, CA 95616

This work was funded by a UC-SMART grant.

Presented at 23rd Rare Earth Research Conference Meeting, July 13-18, 2002, Davis, CA

Introduction

- Thermodynamic data on Pr⁴⁺ containing compounds are of interest because of their development as ionic conductors, superconductors, and alternative gate dielectrics.
- □ Both PrO_2 and Pr_6O_{11} have fluorite-type Fm3m structure with a = 5.392 and 5.467, respectively, $(Pr^{4+}O_2 and Pr_{0.66}^{4+}Pr_{0.34}^{3+}O_{1.83} \square_{0.17})$.
- The goal of this work was to synthesize praseodymium dioxide and obtain its drop solution enthalpy to use for calculation of formation enthalpies of Pr⁴⁺ compounds from high temperature oxide melt solution calorimetry.

Experimental

- PrO₂ was synthesized by oxidation of Pr₆O₁₁ at 280 °C for 10 days in oxygen flow.
- Cell parameters and oxygen occupancies were refined by the Rietveld method using GSAS and ExpGUI software from X-ray diffraction data. Scintag PAD V diffractometer (CuKα radiation) with a diffracted beam monochromator was used.
- Samples were studied by differential scanning calorimetry (DSC) and thermogravimetry (TG). Transposed temperature drop and drop solution experiments were performed using isoperibol calorimeter at 702 °C and sodium molybdate solvent.

Rietveld refinements on PrO₂ and Pr₆O₁₁

	a, Å	Frac O	WRp	χ ²
PrO ₂ after preparation	5.3931(1)	1.01(2)	0.2262	1.96
PrO ₂ aged 14d in air	5.3928(1)	1.04(2)	0.2036	1.70
Pr ₆ O ₁₁ (PrO ₂ -post TTD 702 °C)	5.4706(1)	0.93(1)	0.1861	1.88
Pr ₆ O ₁₁ (post DSC 500 °C)	5.4656(1)	0.97(2)	0.2177	2.43
Standards				
LaB ₆ 660A (4.15691(1))	4.15704(1)		0.2300	1.85
LaB ₆ 660 (4.15695(6))	4.15691(7)		0.1697	2.87
Si 640b (5.43094(4))	5.43137(5)		0.1062	1.65

Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG)

- Netzsch Simultaneous Thermal Analyzer (STA) 449 was used for PrO₂ analyses. Sample temperature was calibrated by melting pure metal standards. Sensitivity was calibrated by C_p-method using sapphire standard.
- □ Samples of PrO₂ were heated at 10 °C/min in platinum crucibles in flow of pure oxygen (40 ml/min). An endothermic peak in the DSC trace was observed at about 390 °C and was accompanied by a steep weight loss.

□ The cell parameter of the sample quenched from 500 °C (a = 5.4656(1) Å) indicated Pr_6O_{11} stoichiometry (a = 5.467 Å [PDF #241006]). The observed weight loss, 1.56 ±0.05 wt.%, is in good agreement with that calculated from oxygen loss in the $PrO_2 = \frac{1}{6}Pr_6O_{11} + \frac{1}{12}O_2$ reaction (1.545 wt.%).

Thermal analyses of PrO_2 in oxygen flow. (DSC - blue trace, TG-black trace). Second endothermic peak corresponds to a reversible transition to the alpha phase of Pr_6O_{11} .

Isoperibol Calorimetry

- Experiments used isoperibol Tian-Calvet type twin microcalorimeter, operated at 702 °C.
- □ In transposed temperature drop experiments samples dropped from ambient temperature into empty calorimeter flushed with oxygen. Heat effect (△H_{ttd}) was calculated from calorimeter trace, applying calibration factor.
- □ In drop solution experiments (△H_{ds}) PrO₂ and Pr₆O₁₁ samples dropped from ambient into sodium molybdate (3Na₂O·4MoO₃) melt bubbled with oxygen.

High temperature oxide melt drop-solution calorimetry

Twinned Thermopiles

Calculation of enthalpy of the reaction

 $(^{1}/_{6})$ Pr₆O_{11(s,298)} + $(^{1}/_{12})$ O_{2(g,298)} = PrO_{2(s,298)}

from drop solution (ΔH_{ds}) transposed temperature drop (ΔH_{ttd}), and DSC experiments.

Reaction		Δ <i>H</i> kJ/mol
$PrO_{2(s,298)} = (1/6)Pr_6O_{11(s,975)} + (1/12)O_{2(g,975)}$	(1) $\Delta H_{\rm ttd} \rm PrO_2$	72.73 ± 1.45 (11)
$(1/_6) \Pr_6 O_{11(s,298)} = (1/_6) \Pr_6 O_{11(s,975)}$	(2) $\Delta H_{\rm ttd} {\rm PrO}_{1.83}$	60.22 ±0.86 (9)
$O_{2(g,298)} = O_{2(g,975)}$	(3) $\Delta H_{(975-298)}$ O ₂	21.74
$PrO_{2(s,298)} = (1/6)Pr_6O_{11 (sln,975)} + (1/12)O_{2(g,975)}$	(4) $\Delta H_{\rm ds} {\rm PrO}_2$	-29.71 ± 1.35 (9)
$(^{1}/_{6})Pr_{6}O_{11(s,298)} = (^{1}/_{6})Pr_{6}O_{11(sln,975)}$	(5) $\Delta H_{\rm ds} {\rm PrO}_{1.83}$	-38.84 ± 0.75 (12)
$(1/_6) Pr_6 O_{11(s,298)} + (1/_{12}) O_{2(g,298)} = PrO_{2(s,298)}$	(6)	
From TTD drops $\Delta H_6 = -\Delta H_1 + \Delta H_2 + (1/12)\Delta H_3$		-10.7 ±1.69
From drop solution $\Delta H_6 = -\Delta H_4 + \Delta H_5 + (1/12)\Delta H_3$		-10.94 ±1.54
From PrO ₂ DSC		
$(1/_6) Pr_6 O_{11(s,667)} + (1/_{12}) O_{2(g,667)} = PrO_{2(s,667)}$		-9.57±0.11 (3)

BaPrO₃ example

The implication of the drop solution data for PrO_2 for determination of formation enthalpies of Pr^{4+} compound.

S.V. Ushakov, J. Cheng, A. Navrotsky, J. R. Wu, S.M. Haile, Mat. Res. Soc. Symp. Proc. Vol. 718

- Tetravalent lanthanide perovskites, MLnO₃, where M = Ba, Sr and La = Ce, Pr, Tb represent an unusual case of lanthanide stabilization in octahedral coordination. These materials are of interest due to their ionic and proton conducting properties.
- □ While enthalpies of formation of MLnO₃ from oxides follow the usual trend for perovskites, namely decreasing stability with increasing structural distortion (Navrotsky 1981), BaPrO₃ was reported to be anomalously stable (Morss and Menzi 1982).
- □ Drop solution experiments were performed on BaPrO₃ and its enthalpy of formation from oxides was calculated.

Thermochemical cycle for calculation of formation enthalpies from oxides for Ba_xPr_yO₃

Reaction		ΔH, kJ/mol
(1) BaO $_{(s,298)} \rightarrow solution_{(975 \text{ K})}$	ΔH_{ds} BaO	-184.61±3.12 ⁽¹
(2) $PrO_{2(s,298)} \rightarrow solution_{(975 K)}$	$\Delta H_{ds} PrO_2$	-29.71 ±1.35(9)
(3) $Ba_x Pr_y O_{3 (s,298)} \rightarrow solution_{(975 K)}$	$\Delta H_{ds} Ba_x Pr_y O_3$	-154.01 ± 3.46 (9)
(4) $xBaO_{(s,298)} + yPrO_{2(s,298)} = Ba_xPr_yO_{3(s,298)}$	$\Delta H_{f,ox} Ba_x Pr_y O_3$	(2
$\Delta H(4) = x \Delta H(1) + y \Delta H(2) - \Delta H(3)$		-65.4 ± 4.8

⁽¹Calculated from BaCO₃ (witherite) drop solution, (116.74 ± 0.70) (Majzlan et.al. 2002) and formation ($\Delta H_{f,ox} = -269.30 \pm 3.04$) (Robie and Hamingway, 1995). ⁽² Exact composition of BaPrO₃ samples was analyzed by microprobe.

Formation enthalpies of tetravalent lanthanide perovskites $ALnO_3$ (where A= Ba, Sr and Ln = Ce, Pr, Tb) from AO and LnO_2 at 25 °C versus tolerance factor, t = $(Ro+R_A)/1.414(Ro+R_{Ln})$.

Conclusions

- □ Enthalpy of the reaction $PrO_{2(s,298)} = (^{1}/_{6})Pr_{6}O_{11(s,298)} + (^{1}/_{12})O_{2(g,298)}$ derived from transposed temperature drop and drop solution experiments on PrO_{2} and $Pr_{6}O_{11}$ is -10 ±2 kJ/mol. That is in agreement with thermal analysis results on PrO_{2} .
- Using obtained value for drop solution enthalpy for PrO₂, formation enthalpy of BaPrO₃ from oxides was calculated as -70 ±10 k/mol. It falls on the normal trend of energetics versus Goldschmidt tolerance factor and do not show any special stabilization of BaPrO₃ relative to other MLnO₃ perovskites.