
Abstract. We measured thermal effusivity of thin plates in the longitudinal direction. This parameter
is strongly correlated with lateral convection, so its determination is very difficult. Thermal
quadrupole theory is presented which allows the theoretical expression of the problem to be
determined. By applying a heat flux without a low-frequency component, only some characteristic
times of the system are excited. A real-time method of estimation is developed by using a non-integer
derivative signal.The results obtained for a copper plate are in good agreement with the literature.
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Nomenclature

Symbol Quantity Units

a thermal diffusivity m2 sÿ1

Cp specific heat J kgÿ1 Kÿ1

Dn non-integer derivative operator
e thickness m
f frequency Hz
h convection heat transfer coefficient W mÿ2 Kÿ1

H transfer function
L Laplace transform
p Laplace variable
R contact resistance m2 Wÿ1 Kÿ1

t time s
T temperature K
x, y coordinates
Z thermal impedance
a, b parameters
D sampling
e residues
x error modelling
z measurement noise
l thermal conductivity W mÿ1 Kÿ1

f heat flux density W mÿ2

F Laplace transform of heat flux density
r density kg mÿ3

y Laplace transform of temperature
o rate of pulsation rad sÿ1

Subscripts
M plate medium
s sensor
f filtered
Superscripts
^ estimated magnitudes
* magnitudes with noise
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1 Introduction
Estimation of thermal properties of thin plates in longitudinal direction is an important
problem in thermal science. It is needed in many industrial applications, such as control
of fuel tanks in aircraft, tanks in boats and alimentary industries, characterisation of
orthotropic composite plates, and study of conductive coatings on an insulating material.
In order to provide an easy experimental method of determining thermal effusivity, a
simple device was developed.

Many theoretical and experimental studies have been carried out on thermal transfer
in plates. The plates may be thin or thick, insulating or conducting, fixed or moving; all
studies deal with the geometry, type of excitation, and thermal measurement devices.

Among these methods, measurement of thermal diffusivity of thin plates is thought
by us to be particularly similar to this study. According to a bibliographic search, three
sorts of configuration can be identified. First, stack plates were studied by Katayama
et al (1969), and Zhang and Degiovanni (1993). Next, heat transfer across the thickness
of a plate has been measured by the flash method (see Parker et al 1961; Degiovanni
and Laurent 1986) and by the periodical flux method (Skumanich et al 1987). Finally,
methods of determining the longitudinal heat transfer in plates have been developed
(Degiovanni et al 1990; Hadisaroyo et al 1992; Philippi 1994).

We studied longitudinal heat transfer in thin metallic plates. Because of lateral heat
loss, our problem is that of a semi-infinite plate in transient state. The disturbances
generated by the sensor are not neglected; they are modelled by a resistance and
localised capacities introduced into the model. A sensitivity study was carried out to
establish the accessible parameters and the optimal frequency range.

After describing the experimental device and the principle of the method, we
present a mathematical model and its application to thermal effusivity. Finally, we report
our first experimental results.

2 The experimental device and the principle of the method
The experimental device is shown in figure 1. Heat flux f (t) is applied to the surface of
the material and the temperature T (t) is measured with a thin-strip sensor consisting
of a Joule effect reheater and a type K thermocouple. The thermocouple is placed in the
central zone of the system. The plate is long enough to be assumed to be semi-infinite.

f�t� thermocouple

probe (reheater)
contact resistance
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hy

symmetrical

metallic plate
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Figure 1. Experimental device.
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Figure 2 . Modelling by means of an electrical analogy.
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This device represents a thermal system, which can be modelled with an electrical
analogy shown in figure 2.

3 Theoretical aspect
The characteristics of the plate (high conductivity and small thickness) allow us to
reduce the problem to unidirectional heat transfer in the longitudinal direction x.
Therefore, the 2-D problem (figure 1) becomes equivalent to a 1-D problem (figure 3).

3.1 Transfer function
The sensor is very thin and assumed to be isothermal. The contact between the sample
plate and the sensor introduces a resistance R at the interface. The entire device is
subject to lateral heat loss and therefore treated as a semi-infinite plate in transient state.
The well-known formalism of the thermal quadrupole (Maillet et al 2000) leads then in
terms of the Laplace field to an input/output relation of the type:

y� p�
F� p�
� �

� 1 0
�rCp�ses p 1

� �
1 R
0 1

� �
yM

�lrCp�1=2� p� kyM�p��1=2
� �

, (1)

where k � 2ha=le, y( p) � L [T (t)], F( p) � L [f(t)], and yM( p) � L [TM(t)].
Therefore, the model describing the measurement of temperature as a function of

heat flux density in terms of the Laplace has the form:

y� p� � 1� R�lrCp�1=2� p� k�1=2
�rCp�ses p� �lrCp�1=2� p� k�1=2�R�rCp�ses p� 1� F� p� � H� p�F� p� , (2)

where H� p� is the transfer function.
3.2 Sensitivity study
By analogy, relation (2) can be written in terms of the Fourier field ( p � jo). Here the
transfer function becomes a complex function H( jo). In the symmetrical system we are
considering here, we have four variables. On the one hand, there are the characteristics
of the materialöeffusivity (lrCp)

1=2 and lateral heat loss k; and on the other hand, a
parameter related to metrologyöthe contact resistance Röand sensor capacity ( rCp)ses.
The effusivity of material is here the required quantity. A sensitivity study allows us to
discuss the possibility of simultaneous determination of the parameters. This analysis
evaluates sensitivity to the parameters and checks the conditions of decorrelation of the
quantities. It also allows us to optimise the frequency window according to the required
objectives. It can lead in the last resort to a reduction of the model if it is shown that in
the observation window certain parameters have a negligible role.

With the function H( jo) being a complex function of frequency, we chose to study
the sensitivities of both the modulus and the phase to the various parameters. The
sensitivity functions of the modulus and the phase of the tested function O to parameter
Zi are defined by the relation:

XZ i
� f � � 1

O�Z1, Z2, � � � , Zn, f �
Zi

dO�Z1 , Z2, � � � , Zn, f �
dZi

, (3)

h

x
h

f�t�

Figure 3. Schematic representation of an equivalent 1-D problem.
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where f � o=2p . In expression (3), O represents in turn the modulus of H, and the
phase of H. The sensitivities are defined by the ratio of the variations of the tested
function to relative variations of the parameters. We show in figures 4 and 5 the results
covering the frequency range 10ÿ6 Hz to 102 Hz.

To carry out these calculations, some orders of magnitude of the expected values of
the parameters are injected into the model. They are average values obtained from the
literature. In the frequency window 10ÿ6 Hz to 10ÿ3 Hz, the sensitivities of the modulus
to the effusivity and lateral heat loss remain high, but unfortunately follow a similar
pattern, and so seem to be correlated. On the other hand, at high frequencies, only
sensor characteristics are sensitive. However, for the frequency range 10ÿ2 Hz to 102 Hz,
the sensitivity of the modulus and phase to k is null, so this parameter can be neglected
in this frequency range. This indicates that the material should be excited in this
frequency range. The reduced model requires finally three unknown parameters to be
determined simultaneously.

4 Determination of parameters by a fractional model
4.1 Structure of the identification model
A non-integer identification model is used in an inverse method to determine the
unknown parameters (see Oustaloup 1995; Battaglia et al 2000). Indeed, relation (4)
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Figure 4. Sensitivity of the modulus of H to various parameters as a function of frequency.
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Figure 5. Sensitivity of the phase of H to various parameters as a function of frequency.
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shows that we have to derive the physical parameters of our systemöboth the
temperature and the heat fluxöin a non-integer form:

�a1p0:5 � a2 p� a3p
1:5�y� p� � �b1 � b2 p

0:5�F� p� , (4)

where a1 � 1, a2 � ( rCp)ses=(lrCp)
1=2, a3 � R( rCp)ses, b1 � (lrCp)

ÿ1=2, b2 � R. The
fractional differential equation is of the form

a1D
0:5T �t� � a2D

1T �t� � a3D
1:5T �t� � b1f�t� � b2D

0:5f�t� . (5)

The general non-integer derivative of a function g�t� is written with the use of the
discrete definition of Gru« nwald (see Miller and Ross 1993):

Dng�t� � 1

Dt n
XK
k�0
�ÿ1�k n

k

� �
g�tÿ kDt�, n 2 <, t � KDt , (6)

where
n
k

� �
� n�nÿ 1� � � � �nÿ k� 1�

k!

is Newton's binomial and Dt assigns the sampling.
The goal of the identification is to estimate, from observed data (temperature and heat

flux) of the system to be studied (figure 1), the coefficients of the fractional differential
equation (5). Here, this model is characterised by the vector ## � �a2 a3 b1 b2�T.

Applying a linear transformation [low-pass filter F ( p) in our case] to equation (5)
and isolating D0:5Tf(t), we obtain a linear continuous regression with null initial
conditions, of the form:

D0:5Tf�t� � ÿa2D1Tf�t� ÿ a3D
1:5Tf�t� � b1D

0ff�t� � b2D
0:5ff�t�

� �ÿD1Tf�t� D1:5Tf�t� D0ff�t� D0:5ff�t��##
� u f## ,

(7)

where Tf(t) and ff(t) are, respectively, the filtered temperature and the heat flux. Even
though equations (5) and (7) are equivalent, only the form of equation (7) allows us to
compute the various derivatives from observed data.

4.2 Fractional state-variable-filter design
In order to estimate parameters, the fractional derivatives of the filtered data Tf(t) and
ff(t), included in the vector uf, require to be computed. Indeed, computation of
fractional derivatives with the use of approximation (6) generates significant errors. The
method consists of using a fractional state-variable-filter (SVF), which is composed of
the fractional derivatives of the filtered data:

x � �D�N fÿ1��nzf�t�, D�Nfÿ2��nzf�t�, . . . ,Dnzf�t�, zf�t��T , (8)

where zf(t) denotes either Tf(t) or ff(t); n � 0:5, and Nf 2 N .
The state-variable-filter used here results from an extension of the Poisson filter to

fractional systems:

F� p� �
�� p

o f

�n
� 1

�ÿNf

� on�Nf
f

p n�Nf � CNf
1 on

fp
n��Nfÿ1� � . . .� CNf

Nfÿ1o
n��Nfÿ1�
f pn � on�Nf

f

,

(9)

where of is the characteristic pulsation frequency of the system, and the filter order is
defined by n�Nf .

A simple device for determining thermal effusivity of thin plates 631



The fractional state ^ space representation of the filter can be written down in the
form:

D nx�t� �

ÿCNf
1 on

f ÿCNf
2 o2�n

f . . . CNf
Nfÿ1o

n��Nfÿ1�
f on�Nf

f

1 0 . . . . . . 0

0 . .
.

0 ..
.

..

. . .
. . .

. . .
. ..

.

0 . . . 0 1 0

2666664

3777775x�t��
on�Nf

f

0
..
.

..

.

0

2666664

3777775z�t� . (10)

By using Gru« nwald approximation (6), the filter can be simulated and the fractional
derivatives of the filtered data directly obtained.

4.3 Parameter estimation
Let us consider a K pair of observed data T �(t) and f(t) with

T ��t� � T�t� � z�t� , (11)

where z(t) is the perturbation signal (measurement noise).
The identification problem can be solved by using a linear least-squares technique

(see Ljung 1987), by minimising the quadratic norm of function e(t) defined by:

e�t� � D0:5T �f �t� � â2D
1T �f �t� � â3D

1:5T �f �t� ÿ b̂1D
0ff�t� ÿ b̂2D

0:5ff�t�
� u �f##̂, (12)

where ##̂� [â2 â3 b̂1 b̂2 ]
T is the vector of parameters to be estimated.

The criterion J that we need to minimise can be written:

J�##̂� � ETE , (13)

where E � [e(k0Dt) ef(k0 � 1)Dtg . . . ef(k0 � Kÿ 1)Dtg]T, k0 is an integer chosen such
that k0Dt � tf , where tf denotes the settling time of the filter F ( p) .

Using the linear regression form (7), we obtain the optimal value of ##̂minimising
J (##̂):

##̂opt � �X �T
f X �

f �ÿ1X �T
f D0:5T �f , (14)

where

X �
f � �u �Tf �k0Dt� u �Tf f�k0 � 1�Dtg . . . u �Tf f�k0 � Kÿ 1�Dtg�T

T �
f � T �f �k0Dt� T �f f�k0 � 1�Dtg . . . T �f f�k0 � Kÿ 1�Dtg�T

(
:

4.4 Analysis of the estimation bias
In order to analyse the estimation bias, we consider a signal x(t) defined by

x�t� � Lÿ1f� p0:5 � a2 p� a3 p
1:5� � F � p�g 
 z�t� , (15)

where Lÿ1 denotes the inverse Laplace transform and 
 the convolution product.
Combining equations (5) and (15), we obtain:

D0:5T �f �t� � a2D
1T �f �t� � a3D

1:5T �f �t� � b1D
0ff�t� � b2D

0:5ff�t� � x�t� . (16)

Relation (16) can be written in matrix form:

D0:5T �
f � X �

f ##� n . (17)

The classical estimation bias can be deduced by replacing D0:5T �
f in equation (14)

by its expression (17):

D## � ##̂opt ÿ ## � �X �T
f X �

f �ÿ1X �T
f n , (18)

where n� �x�k0 � Dt� xf�k0 � 1� � Dtg . . . xf�k0 � Kÿ 1� � Dtg�T.
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5 Results and discussion
A sensor placed in the central zone of the investigated plate constitutes the experimental
device (figure 1). This sensor comprises both a reheater strip and a Chromel ^Alumel
thermocouple situated in the middle of the strip. The total thickness of the sensor is
approximately 0.2 mm. The reheater is fed from an amplified signal generator.
The delivered power of the excitation is measured and therefore well known. The two
thermocouple wires are connected to brass pins kept at ambient temperature.
The thermocouple output is amplified 1000 times. A numerical oscilloscope ensures
acquisition of the data. In order to improve the contact between the sensor and the plate,
we used a thermal tape. The plate size (500 mm�100 mm� 2 mm) is sufficient for the
material to be regarded as a semi-infinite medium with respect to thermocouple for an
acquisition time of about 80 s.

An excitation without a low-frequency component is used so as to make it
insensitive to lateral heat loss. Therefore, the permanent component of the excitation f(t)
must also be zero. In practice, two experiments are simultaneously carried out. First, we
store the temperature signal obtained at a heat flux density in the form of a sequence of
square waves. Next, a similar experiment is carried out with a Heaviside heat flux
density half the previous one. By deducting the second signal from the first we obtain the
required results (see figure 6). The same procedure is applied to the temperature T (t).

f1�t� f2�t�

t t

f�t�

t

Figure 6. Schematic description of the experimental method.
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Figure 7. Experimental heat flux density as a function of time.
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The method described here was applied to determine the thermal effusivity of a
copper plate. The generalised magnitudes of heat flux density and temperature thus
obtained are represented in figures 7 and 8 as functions of time. A spectral analysis of
the function f(t) (figure 9) is presented to draw attention to the frequency field used for
the test. It shows that the intended frequency range is well covered. Indeed, this signal
permits us to filter out low frequencies so as to eliminate the lateral heat loss. The values
of the parameters calculated by equation (14) with data obtained from this test are
listed in table 1. A sampling period Dt of 0.1 s was chosen to compute the parameters.
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Figure 8. Variation of temperature with time.
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Figure 9. Spectral analysis of f�t�.
Table 1. Parameters obtained from the response to the heat flux (Dt � 0:1 s):

Derivative order Differential model parameters

na �
0:5
1
1:5

24 35 a �
1

ÿ0:3732
0:5721

24 35

nb � 0
0:5

� �
b � 4:65� 10ÿ5

3:07� 10ÿ4

� �
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To evaluate the bias of the method, the residues of estimation e(t) were computed
(figure 10). This has revealed a large bias due to incorrect description of the thermal
behaviour of the system in very brief time intervals. Asymptotic development of the
transfer function H( p), given by relation (4), to brief time intervals ( p!1), allows the
validity of the model to be evaluated:

y� p�
p!1

' b2

a 3 p
F� p� ' 1

�rCp�ses p
F� p� . (19)

It is seen that here the transient effects of the probe are not properly taken into
account. Consequently, we suggested that the model would be improved by adding a new
parameter b3 in relation (4):

�a1p0:5 � a2 p
1 � a3 p

1:5�y� p� � �b1p
0 � b2 p

0:5 � b3 p
1�F� p� . (20)

This allows better approximation of very fast effects in the probe:

y� p�
p!1

' b3

a3p0:5
F� p� . (21)

The new vector providing the estimate is ### � [a2 a3 b1 b2 b3 ]
T. Parameter values

calculated with the use of equation (14) are listed in table 2. Plot of the residues e(t) in
figure 11 shows that our estimate is unbiased and therefore the parameters determined
by us are not skewed. Using the differential model and parameters in table 2 we can now
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Figure 10. Computation of the residues (Dt � 0:1 s).
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calculate the thermal properties (see table 3). Thermal effusivity of the copper plate is
found to be of the same order as found in the literature.

6 Summary and conclusions
A new simple method is reported for characterising thermally conductive thin plates in
longitudinal direction. The experimental procedure is very simple with light and
inexpensive devices used for the measurements. The behaviour of the physical system on
application of a heat flux to the lateral surface is determined by using a non-integer
model. Study of the sensitivity of the modulus and phase of the transfer function to the
various parameters allows evaluation of the possibility of simultaneous determination of
the parameters. The study also makes it possible to optimise the frequency window
according to the required objectives and leads to a reduction of the model. This
frequency treatment makes the method undemanding as regards limit conditions and,
particularly, external thermal disturbances. The identification problem is solved by a
linear least-squares technique, giving a robust and fast determination. Use of this
method to estimate thermal effusivity of a semi-infinite copper plate was found to yield
good results.
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