
Abstract. The laser flash technique allows measurement of the thermal diffusivity of solids and
liquids up to very high temperatures. Various mathematical models have been developed over
the past few decades to analyse the experimental data and to remove the influence of the pulse
length of the laser and heat loss effects. The most sophisticated model was established by Cape
and Lehman (1963 J. Appl. Phys. 34 1909 ^ 1913) which considers finite pulse effects as well as
facial and radial heat losses. For simplification, various assumptions were made in this work to
achieve an analytical solution. Improvements of the assumptions were made by other authors
such as Josell et al (1995 J. Appl. Phys. 78 6867 ^ 6868). Further improvements are proposed here.
For accurate pulse-length correction, the original laser pulse is monitored by the hardware and
used in the analysis. Furthermore, some improved approximations were integrated into the model.
Finally, higher-order solutions of the mathematical description are considered in the analysis.
The improved mathematical model is integrated in the nonlinear regression routine, allowing
fitting of experimental data to yield thermal diffusivity values with high accuracy.

1 Introduction
Over the past few decades the flash method (Parker et al 1961) has become the most
widely used technique for the measurement of the thermal diffusivity of various kinds of
solids, powders, and liquids. In this technique, the front face of a small, usually disk-
shaped, plane-parallel sample is heated by a short energy (laser) pulse. The temperature
rise at the rear surface is measured versus time with an infrared detector. Easy sample
preparation, small required sample dimensions, fast measurement times, and high
accuracy are only a few of the advantages of this non-contact and non-destructive
measurement technique. By placing the sample in a tubular furnace, temperature-
dependent measurements can be easily realised. Since the introduction of the method
by Parker et al (1961) new models for processing the raw data have been developed.
Mathematical algorithms have been created to correct for heat loss (Cowan 1963) and
finite pulse effects (Azumi and Takahaski 1981). One of the most sophisticated mathe-
matical models was developed by Cape and Lehman (1963) in which both radial and
facial heat losses as well as finite pulse effects were considered. It is based on the
solution of the transient heat conduction equation in cylindrical coordinates with
radiative heat losses from all surfaces used as boundary conditions. To solve this equa-
tion several simplifications and approximations were employed. In the last few years
several improvements were published for these approximations, for example by Josell
et al (1995).

2 The improved mathematical model
In this work we present an improved mathematical model for the treatment of laser flash
data. It is based on the theoretical model developed by Cape and Lehman (1963) for a
cylindrical sample with account taken of both facial and radial heat losses.
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The heat losses from the front and rear surfaces, as well as from the surrounding
area, are considered as radiative heat losses as already described in the solution of Cape
and Lehman (1963):
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Here, T (r, t) is the temperature rise at the rear surface of the sample as a function of
time t and radial location r ; T1 is the signal rise under isothermal conditions at infinite
times; Cm and Xm are parameters accounting for the facial heat loss and will be discussed
later; W(t) is the pulse shape of the laser employed for the tests; t is the pulse length of
the laser. Analysis of W(t) will be discussed later. The quantities Yr will be called radial
Biot numbers and describe the amount of radial radiative heat loss:

Yr � 4serT
3
0 l
ÿ1r0 . (2)

Here, s is the Stefan ^Boltzmann constant and e is the total emissivity of the sample; T0

is the sample temperature, and l its thermal conductivity; r0 is the radius of the sample.
Other parameters such as oim and tc will be explained afterwards. The coefficients
Di (r, Yr) define the amount of radial heat loss over the outer cylinder surfaces. For
Yr � 1, the zero-order solution D0(r, Yr) gives approximately 96% of all contributions of
this series (Cape and Lehman 1963). The solution used in this work makes additional
use of the contributions of D1(r, Yr) and D2(r, Yr) to reduce the influence of high heat
losses at high temperatures. Therefore, more than 99% of the contributions of Di (r, Yr)
on the final result are considered.
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The Jx are the Bessel functions; r is the radial location between the centre of the sample
and the point where the temperature rise should be determined. The zi will be discussed
later. Equation (3) can be simplified if only the temperature rise in the centre of the
sample is considered. In this case equation (3) reduces to:
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The zi in equations (3) and (4) are defined as the positive roots of equation (5):

YrJ0�zi� � zi J1�zi� . (5)

For high accuracy, it was necessary to obtain zi by numerical procedures which were
time-consuming and therefore not useful for practical applications such as fast nonlinear
regression routines. In this work another approach was used which was already men-
tioned by Cape and Lehman (1963). The exact dependence between Yr and z 2

i was
calculated for different Yr and zi. z

2
i was used here as this is the parameter required in

equation (4) for the determination of Di (Yr). The resulting points were fitted with poly-
nomial functions. By using these functions, determination of z 2

i (Yr) is now much easier
and faster. To achieve a high level of accuracy, higher-order polynomials were used for
the approximations. The functions for z 2

0 , z
2
1 , and z 2

2 were found to be:
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and
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The difference between the real z 2
i and the z 2

i determined by the above equations is in
all cases better than 2:5� 10ÿ7 (least squares). This good correlation between the exact
z 2
i and the ones determined by equations (6) to (8) can be seen in figure 1. No differences
are visible between the exact values and the calculated ones.

It must be pointed out that, when the above approximations are used, one problem
can arise. For no radial heat loss, z0 and Yr go to 0. Therefore, D0(Yr) will no longer be
defined (0 divided by 0). To overcome this problem, a boundary analysis was carried
out, resulting in:
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�D0�Yr�� !

1

1� 0:25Yr
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Another factor required for solving equation (1) are the products CmXm. These param-
eters are defined by equation (10) (Cape and Lehman 1963).
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Here a is the thermal diffusivity of the sample; d is the thickness of the sample; Yx can
be described as the facial Biot number. Yx is defined in a similar way to equation (2),
by exchanging r0 for the sample thickness d. The Xm are defined as the positive roots of
equation (11):

�X 2
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x � tan�Xm� ÿ XmYx � 0 . (11)
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Figure 1. Comparison between the exact values of z 2
i and the z 2

i determined with equations (6) to (8).
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Again, the determination of the exact dependence between Yx and Xm requires numerical
approaches. Therefore, Cape and Lehman (1963) already offered the first approach for
obtaining Xm (Yx) from approximated polynomials. These polynomials were then
improved by Josell et al (1995). Here, we improved further the accuracy of the Xm.
We used the following equations:
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Using the new functions, an improved correlation between the exact Xm and the ones
used for the calculations could be found especially for high heat losses. Table 1 provides
a comparison of exact Xm values with those determined by others and the ones calculated
in this work. It can be clearly seen that the new functions provide accurate values of the
required Xm.

oim in equation (1) is defined in the following way:
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�
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tc, which also appears in equation (1), is the characteristic time required for a heat pulse
to propagate through a sample of thickness d:

tc �
�
d

p

�2
1

a
. (15)

Table 1. Comparison of the quality of the approximations for Xm in equation (1) by different authors.

Biot number, Exact Cape and Josell et al (1995) This work
Yx (m � 1) solution Lehman (1963)

0.05 3.1731049 3.1724 3.173105 3.1731049
0.50 3.4310143 3.3539 3.430933 3.4310141
1.00 3.6731944 3.3607 3.670930 3.6731945
1.50 3.8794820 3.2316 3.864288 3.8794819
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As can be seen from figure 1, z 2
i sharply increases with increasing i ; oim increases in

the same way with i. Because of this, higher-order solutions of z 2
i (z 2

3 , z
2
4 , . . . ) yield

only negligible contributions to oim in equation (1) and are not considered here.
The last quantity not defined in equation (1) is the pulse shape W(t) of the laser

employed for the tests. Generally, the pulse shape and length are approximated by simpli-
fied square or triangle functions. Of course, these approximations are rough and do not
take into account the real pulse shape of the laser. Furthermore, any changes of the laser
pulse shape with time or with the laser settings are difficult to consider. The NETZSCH
model LFA 427 used in this work has an integrated laser pulse diode, allowing measure-
ment of the laser pulse shape for each individual measurement. This allowed us to
check the relationship between laser settings and pulse shape. A mathematical model was
developed allowing accurate pulse description, and therefore pulse-length correction, for
the laser system employed here. A combination of different exponential functions with
different time constants was employed:

W�i� � A�1ÿ exp�ÿi=l1� exp�ÿi=l2�� , i 4 te

W�t� � Af1ÿ exp�ÿte=l1� exp�ÿte=l2� exp�ÿ�tÿ te�=l3�g , t > te .
(16)

A is the signal height of the output of the laser diode. The different li describe the
different time constants occurring in different stages of the laser power output (start,
intermediate, end). The characteristic time te is the time when the power input into the
flash lamps is switched off and the power output exponentially goes down to 0. By
optimising the different parameters of equation (16) by a nonlinear regression routine on
the measured pulse shape, the mathematical model can be adjusted to reproduce the
real pulse shape of the laser shot employed for the tests.

Figure 2 provides a comparison between a measured pulse shape of the LFA 427
(Bra« uer et al 1992) and calculations made by the nonlinear regression process. The
laser of the LFA was set to a pulse length of 0.8 ms. Data acquisition was started when
the laser received the command to fire. After approximately 0.1ms, the power output
of the laser starts. The onset of this power output is determined and used as the zero
point for the time axis of the detector signal. The result of the nonlinear regression
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Figure 2. Comparison between the measured pulse shape and the result of a nonlinear regression
process based on equation (16). The nominal pulse width was 0.8ms.
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routine on the measured pulse shape (figure 2) is used as W(t) in equation (1). Therefore,
the optimum pulse-length correction is guaranteed.

Application of nonlinear regression to a measurement made on Pyroceram 9606 at
900 8C is shown in figure 3. The nonlinear regression process was based on a modified
Levenberg ^Marquardt (Opfermann 1985) algorithm. It can be clearly seen that the new
model provides an accurate description of the resulting temperature rise at the rear face
as well as the heat loss effects. As a result of the fitting process, the thermal diffusivity
and the radial/facial heat loss factors can be derived with maximum possible accuracy.

To check the accuracy of the new mathematical modeling, a theoretical curve was
calculated with a finite-element simulation software (AnsysTM). Several calculations were
done for samples with different emissivities and at different temperatures. The resulting
curves were analysed with a nonlinear regression routine on the basis of equation (1).
With the new model, the theoretical values for the thermal diffusivity were found to be
within the accuracy of the FEM simulations.

Figure 4 shows the calculated curve (squares) and the nonlinear regression applied
to the theoretical curve. A disk-shaped sample with a thickness of 4mm, diameter
of 12.7mm, emissivity of 93% on all surfaces, density of 1.655 g cmÿ3, specific heat of
2:136 J gÿ1 Kÿ1, and thermal diffusivity of 10:55 mm2 sÿ1 was employed for the simula-
tions. Such values would be typical for graphite samples. The simulation was carried out
for a temperature of 2000 8C. The laser pulse was approximated by a constant-power
input with a duration of 0.5ms. It can be clearly seen that there is no difference between
the two curves. The resulting thermal diffusivity was within 1.5% of the original value
used for the FEM modeling. It must be pointed out that the difference between the
simulation and the nonlinear regression routine is mainly due to the limited time and
temperature accuracy of the simulated curve.

3 Conclusion
An existing mathematical model for the analysis of the detector signals in laser flash
measurements was optimised. Improved accuracy in the approximations of the individual
parameters leads to increased accuracy of the results at high temperatures. Analysis of
the real pulse shape employed for the individual test and integration of this in the
pulse-length correction results in a further improvement of the accuracy of the results at
short measurement times.
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Figure 3. Application of the nonlinear regression (fitting) process (line) to test result on Pyroceram
9606 (squares) making use of the new mathematical model.
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Figure 4. Nonlinear regression (fitting) process (line) together with a theoretical curve calculated
by FEM simulation.
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