T字一体型ナノセンサを用いた 熱伝導率計測における誤差の推定 Estimating Error of Measuring Thermal Conductivity Using a T-Type Nano Sensor

伊藤洋平*、高橋厚史*、藤井丕夫**、張興*** Yohei Ito, Koji Takahashi, Motoo Fujii, Xing Zhang

ー本のナノワイヤ材料の熱伝導率を計測するために開発したサブミクロンオーダーの Pt ホットフィルムを有する T 字一体型ナノセンサについて、その計測方法と製作方法に起因する誤差について議論する。数値シミュレーションと一次元解析を比較することで、基板から浮いた状態の Pt ホットフィルムを製作するために生じるアンダーエッチングにより、カーボンナノチューブなどナノワイヤの熱伝導率が約 17%低く算出されることがわかった。計測例として SiC ナノワイヤの熱伝導率計測結果についても報告し、そこでの接触熱抵抗による誤差は接触長さに大きく左右され 20%以上になる場合もあることがわかった。これらの誤差の推定によって、今後の計測はより高い信頼性のものとなるといえる。

We discuss measuring error caused by fabrication and measurement of a T-Type nano sensor with suspended sub-micrometer Pt hotfilm heater which have been developed to measure thermal property of individual nanowire materials. Comparing numerical simulation and 1-dimenshional analysis, it is appeared that thermal conductivity of nanowire material such as carbon nanotube is calculated 17% lower. As example, thermal conductivity measuring result of SiC nanowire is reported and error caused by contact thermal resistance is depend on the contact length and it becomes as much as 20% sometimes. It can be said that future measuring has higher reliability by these error estimation.

[Keywords: Heat transfer, Nanoscale, Measuring Method, Measurement Error]

1. はじめに

カーボンナノチューブをはじめとしたナノワイヤ材料 の熱物性はバルク材料とは大きく異なり、熱制御用の素 材として大きな期待が寄せられている[1,2]。しかしながら、 ナノ構造中の熱輸送については未だ十分な解明がなされ ていないため、構造制御への指針が立たないまま試行錯 誤的な開発研究が続いているのが現状である。

その第一の原因としては、ナノ構造と伝熱の関係につ

 * 九州大学大学院工学府航空宇宙工学専攻 〒819-0395 福岡市西区元岡 744 番地.
 Dept. of Aeronautics and Astronautics, Fac. of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395.
 FAX: 092-802-3017 E-mail: you-i@aero.kyushu-u.ac.jp
 ** 産業技術総合研究所

〒819-0395 福岡市西区元岡 744 番地.

National Institute of Advance Industrial Science and Technology, 744 Motooka Nishi-ku, Fukuoka 819-0395.

Dept. of Engineering Mechanics, Tsinghua University, Beijing, 100084, China.

いての実験データが著しく不足していることがあげられ る。ナノスケールでの熱輸送現象を理解するために、様々 なナノワイヤ材料の熱物性を正確に計測することが不可 欠であり、そのため実験技術の開発が鍵となる。

Hone ら[3-5]はマット状の単層カーボンナノチューブ サンプルの熱伝導率計測を行っている。しかしながら、 マット状のサンプルから得られるデータは不均質な集合 体の平均量であって、非常に信頼性は低いといわざるを 得ない。ナノワイヤについて深く研究するためには、そ れを集合体ではなく一本だけ取り出して熱物性を計測す る必要がある。実際そのために MEMS 技術を用いて緻密 なマイクロセンサを製作し、熱物性の計測が行われてい る[6-8]。そのセンサは窒化シリコンの梁で吊られた二つ の対称な窒化シリコン薄膜上に、Pt ヒーターおよびセン サを作成し、それらの間に一本のナノ材料を架橋する方 式を採用している。

ただし、このような MEMS 技術による 3 次元構造の製 作は非常に困難であり、より簡単な構造とより感度の高

^{***} 清華大学

い計測を目指して、我々のグループでは、T字一体型ナノ センサを用いたナノ材料の熱物性計測方法を開発した。 これは、カーボンファイバーの熱伝導率を精密に計測す るために Fujii らによって考案された方法[9]を応用した もので、NEMS 技術によって製作された幅数 100nm、長 さ 10µm 程度の懸架した Pt ホットフィルムをセンサとし て用いている。これまでに多層カーボンナノチューブや シリコンカーバイドナノワイヤなどのナノワイヤ系の材 料を一本だけ取り出しての熱伝導率計測に成功している [10,11]。

今後は、さらに多くの種類のナノワイヤを扱うことに よって、ナノスケールの伝熱機構が明らかになることが 期待されるが、その場合に計測誤差を十分に把握してお くことが肝要である。

そこで、本論文では、この熱伝導率計測方法について 詳しく述べながら、製作方法や計測方法に起因する種々 の誤差について数値シミュレーションを併用して定量的 に議論する。

2. 計測原理

ナノワイヤ材料の熱伝導率を計測するため、シリコン 基板上に、基板から浮いた状態のPtホットフィルムを製作 し、Ptホットフィルムの中央部とヒートシンク間にナノワ イヤを架橋する。このナノワイヤの架橋前後で、Ptホット フィルムの温度分布は変化し、その体積平均温度の変化 を抵抗値の変化として検出する。この温度変化を一次元 モデルの解析解にあてはめて、ナノワイヤの熱伝導率を 求める。具体的な熱伝導率の導出を以下に示す。計測は 真空中(1.0×10⁻³Pa程度)で行うため、対流による熱損失は 無視できる。また、ジュール加熱によるPtホットフィルム の温度上昇は 10K程度であり、輻射の影響も考慮しなく てよいといえる。

T字一体型ナノセンサはFig.1 のようなモデルとなる。 Fig.1 のようにPtホットフィルムをナノワイヤとの接点の 左右で区別し、1、2 の部位に分ける。Ptホットフィルム の長さをl、1、2 の部位の長さをそれぞれ l_1 、 l_2 とする。 Ptホットフィルムの 1 の部分の一次元熱伝導方程式は、 位置 x_1 での温度を $T(x_1)$ 、 λ をPtホットフィルムの熱伝導率、 q_v を単位体積単位時間あたりの加熱量として、

$$\lambda \frac{d^2 T_1(x_1)}{dx_1^2} + q_v = 0 \tag{1}$$

で表される。加熱量 q_v はPtホットフィルムに加える電流I、 電EV、Ptホットフィルムの断面の幅をw、高さをdとする と、 q_v =IV/(lwd)である。2 の部分についても同様に一次 元熱伝導方程式を立てることができる。ナノワイヤ部分 は、位置 x_f での温度を $T(x_f)$ 、 λ_f をナノ材料の熱伝導率とし て

$$\lambda_f \frac{d^2 T_f(x_f)}{dx_f^2} = 0 \tag{2}$$

と表される。これらの熱伝導方程式をヒートシンクでの 温度は周囲温度 T_0 と等しく一定であり、Ptホットフィルム とナノワイヤの接点において両者の温度は等しいという 境界条件のもとで解く。接点での温度は T_j とする。1の 部分の温度分布は、

$$T_{1}(x_{1}) = -\frac{q_{\nu}}{2\lambda}x_{1}^{2} + \frac{q_{\nu}l_{1}^{2} + 2\lambda(T_{j} - T_{0})}{2\lambda l_{1}}x_{1} + T_{0}$$
(3)

となり、2の部分についても同様に温度分布が得られる。 ここでは、接触熱抵抗は無視している。これらの式から Pt ホットフィルムについて、

$$\Delta T_{L} = \frac{1}{l} \int_{0}^{l} T(x) - T_{0} dx$$
(4)

Fig.1 Analysis model of T-type nano sensor

で定義する体積平均温度変化を計算すると、

$$\Delta T_{L} = \frac{\left(l_{1}^{3} + l_{2}^{3}\right)q_{\nu}}{12\lambda l} + \frac{T_{j} - T_{0}}{2}$$
(5)

が得られる。この体積平均温度変化と Pt ホットフィルムの抵抗値の変化の関係は

$$\Delta T_L = \frac{\Delta R}{\beta R_0} \tag{6}$$

となる。ここで ΔR は抵抗値変化、 β は抵抗温度係数、 R_0 は 基準(0°)での抵抗値である。

次に熱の流れについて考える。ナノ材料を通過する熱流は、熱流束をq_f、Ptホットフィルムの断面積をA_h、ナノ材料の断面積をA_fとすると、Ptホットフィルムとナノ材料の接点では

$$q_f A_f = -\lambda \frac{\partial T_1}{\partial x_1} A_h + \lambda \frac{\partial T_2}{\partial x_2} A_h$$
⁽⁷⁾

と表され、式(3)で表される温度分布*T*₁および温度分布*T*₂ を微分、代入することでナノ材料の熱流束は

$$q_{f} = \frac{\lambda A_{h}}{A_{f}} \left[\frac{q_{v}l}{2\lambda} - \frac{\left(T_{j} - T_{0}\right)l}{l_{1}l_{2}} \right]$$
(8)

となる。

一方、ナノ材料の温度勾配を考慮すると、ナノ材料の 熱流束は

$$q_f = \lambda_f \frac{T_j - T_0}{l_f} \tag{9}$$

とも表すことができ、式(8)、(9)より

$$\lambda_f \frac{T_j - T_0}{l_f} = \frac{\lambda A_h}{A_f} \left[\frac{q_v l}{2\lambda} - \frac{\left(T_j - T_0\right)l}{l_1 l_2} \right]$$
(10)

となり、ナノ材料の熱伝導率は

$$\lambda_{f} = \frac{\lambda A_{h} l_{f}}{A_{f}} \frac{\left[\frac{q_{\nu} l}{2\lambda} - \frac{\left(T_{j} - T_{0}\right) l}{l_{1} l_{2}}\right]}{\left(T_{j} - T_{0}\right)}$$
(11)

と計算できる。式(5)から T_j - T_0 が求まり、

$$\lambda_{f} = \frac{l_{f} l^{4} \lambda A_{h} - 12 l_{f} l^{2} \lambda^{2} A_{h} \Delta T_{L} / q_{v}}{12 l_{l} l_{2} A_{f} l \lambda \Delta T_{L} / q_{v} - l_{1}^{4} l_{2} A_{f} - l_{1} l_{2}^{4} A_{f}}$$
(12)

となり、解析的にナノ材料の熱伝導率が求まる。

3. T字一体型ナノセンサの製作方法

T字一体型ナノセンサは半導体微細加工技術を応用 して製作される。その作製方法をFig.2に示す。はじめに、 SiO₂層を持つSi基板上にEBレジストをスピンコーティン グする。次に電子線描画装置を用い、T字一体型ナノセン サのパターンを基板上に直接描画する。この上に真空蒸 着装置を用いて、PtおよびTiを蒸着し、リフトオフ法によ りT字一体型ナノセンサのパターンを作製する。ここでPt とTiの膜厚は40nmと5nm程度であり、TiはPtとSiO₂と の間の接着力強化のために用いている。Ptホットフィルム となる部分を基板から浮かせるために、SiO₂層を等方的 にエッチングする。なお、このときにTiも除去される。

Fig.2 Fabrication process of T-Type nano senor

さらに、Ptホットフィルムが基板に接することを防ぐため にSi基板も数µm程度エッチングする。この工程によって、 基板から浮いたPtホットフィルムとヒートシンクとなる 部分が向かい合った形状のデバイスがFig.2(6)のように 完成する。

4. SiC ナノワイヤの熱伝導率計測

この計測方法を用いた一例として、SiC ナノワイヤの計 測結果について報告する。SiC はヤング率, 熱伝導率が高 く、プローブやセンサとして応用されることが期待され る材料である。この計測に使用した Pt ホットフィルムは、 幅 491nm、厚さ 49nm、長さ 9.74µm である。Pt ホット フィルムとヒートシンクの距離は 5.13µm である。SEM 内に組み込まれたマニピュレーターを用いて、製作した Pt ホットフィルムとヒートシンクの間にナノワイヤを架 橋することでナノワイヤの熱伝導率計測が可能となる。 Fig.3 にその様子を示す。SiC ナノワイヤと Pt ホットフィ ルムおよびヒートシンクの接着には EBID (electron beam induced deposition)法を用いる。架橋した SiC ナノ ワイヤの形状は TEM を用いて事前に計測され、直径 141nm であり、厚さ7nm のアモルファス層を有する。計 測は真空液体窒素クライオスタット内で、周囲温度を 140Kから420Kの間で変化させて行った。

計測結果を Fig.4 に示す。ここでは Slack によるバルク のデータ[12]を掲載している。また、SiC ナノワイヤのデ ータはアモルファス層では熱伝導を生じないと仮定し、 接触熱抵抗は考慮に入れずに計算している。結果からこ の SiC ナノワイヤの熱伝導率は最大で110W/mK 程度と 推定され、バルクの場合比較してピークをとる温度が高 温側にシフトしていることから境界散乱の影響が明らか に現れていることが分かる。このようなナノ材料特有の 性質を理解するためには、直径以外にも結晶状態の違い などで熱伝導率のデータを比較していく必要があるが、 そのためには、本計測方法における誤差を十分に把握し ておくことが非常に重要である。

5. 計測誤差

5.1 Pt ホットフィルムの熱伝導率の誤差

計測に用いられるPtホットフィルムの熱伝導率は式(1) で示される一次元熱伝導方程式から求まる。境界条件を

Fig.3 SEM image of T-type nano sensor and bridged SiC nanowire between Pt hotfilm and heat sink

Fig.4 Thermal conductivity of SiC nanowire and SiC bulk [12]

Ptホットフィルムの両端でT=T₀とすると

$$T(x_{h}) = -\frac{q_{v}}{2\lambda} x_{h}^{2} + \frac{q_{v}l}{2\lambda} x_{h} + T_{0}$$
(13)

式(4)の定義から体積平均温度は

$$\Delta T_L = \frac{q_v l^2}{12\lambda} \tag{14}$$

と計算できる。この式から Pt ナノフィルムの熱伝導率は

$$\lambda = \frac{q_v l^2}{12\Delta T_L} \tag{15}$$

と表される。体積平均温度変化とPt ホットフィルムの抵 抗値の変化の関係式(6)を代入し整理すると

$$\lambda = \frac{q_{\nu}l^2}{12} \frac{\beta R_0}{\Delta R} \tag{16}$$

ここで*β*は抵抗温度係数であり

$$\beta = \left(\frac{R_n - R_0}{R_0}\right) / (T_0 - 273.2)$$
(17)

と表される。ここで R_n は $q_v=0$ での抵抗値である。加熱量 を $Q(=IV=q_v l/(wd))$ とするとPtホットフィルムの熱伝導率 は

$$\lambda = \frac{R_n}{\frac{\Delta R}{Q}} \frac{\beta}{1 + \beta (T_0 - 273.2)} \frac{l}{12wd}$$

$$= \frac{(R_n - R_0)l}{12b(T_0 - 273.2)wd}$$
(18)

と表される。ここで $b=\Delta R/Q$ であり、抵抗値変化の加熱量 に対する比例定数である。 λ は R_n , R_0 , l, b, T_0 , w, dの関数であるので、誤差 $\delta \lambda$ は

$$\delta\lambda = \left\{ \left(\frac{\partial\lambda}{\partial R_n} \, \delta R_n \right)^2 + \left(\frac{\partial\lambda}{\partial R_0} \, \delta R_0 \right)^2 + \left(\frac{\partial\lambda}{\partial b} \, \delta b \right)^2 + \left(\frac{\partial\lambda}{\partial T_0} \, \delta T_0 \right)^2 + \left(\frac{\partial\lambda}{\partial l} \, \delta l \right)^2 + \left(\frac{\partial\lambda}{\partial w} \, \delta w \right)^2 + \left(\frac{\partial\lambda}{\partial d} \, \delta d \right)^2 \right\}^{\frac{1}{2}}$$
(19)

で計算される。それぞれの誤差成分はセンサ作製の精度、 計器の測定精度から計算する。lおよび wはSEMにより計 測を行い、その誤差は 3.5nmである。dはAFMにより計 測を行い、その誤差は 0.34nmである。Tは温度コントロ ーラーにより制御を行い、誤差は 0.1Kである。 $R_n, R_0,$ b は計測で得られた測定点から求めた最小二乗法による 直線y=A+Bxの切片および傾きから得られる。Aおよび Bの誤差 σ_A, σ_B は

$$\sigma_A = \sigma_y \sqrt{\frac{\sum x^2}{\Delta}}$$
(20)

$$\sigma_{B} = \sigma_{y} \sqrt{\frac{N}{\Delta}}$$
(21)

で表される。ここで、

$$\Delta = N \sum x^2 - \left(\sum x\right)^2 \tag{22}$$

であり、

$$\sigma_{y} = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_{i} - A - Bx_{i})^{2}}$$
(23)

と表される。300K における計測データから偏導関数、誤 差成分を求め、式(14)に代入し計算すると、300K で $\delta\lambda$ =0.522W/mK が得られる。すなわち測定結果の1.1% となる。

5.2 ナノ材料の熱伝導率の誤差

ナノ材料の熱伝導率 λ_{f} は体積平均温度の加熱量に対する比例定数 $a=\Delta T_{I}/Q$ を導入すると式(12)は、

$$\lambda_{f} = \frac{l_{f}l^{4}\lambda A_{h} - 12l_{f}l^{2}\lambda^{2}A_{h}a}{12l_{l}l_{2}A_{f}l\lambda a - l_{1}^{4}l_{2}A_{f} - l_{1}l_{2}^{4}A_{f}}$$
(24)

と表すことができる。 λ_{f} は l_{f} 、l、 λ 、 A_{h} 、 A_{f} 、a、 l_{1} 、 l_{2} の関数であるので計測誤差は

$$\delta\lambda_{f} = \left\{ \left(\frac{\partial\lambda_{f}}{\partial l_{f}} \partial l_{f} \right)^{2} + \left(\frac{\partial\lambda_{f}}{\partial l} \partial l \right)^{2} + \left(\frac{\partial\lambda_{f}}{\partial \lambda} \partial \lambda \right)^{2} + \left(\frac{\partial\lambda_{f}}{\partial A_{h}} \partial A_{h} \right)^{2} + \left(\frac{\partial\lambda_{f}}{\partial a} \partial a \right)^{2} + \left(\frac{\partial\lambda_{f}}{\partial l_{1}} \partial l_{1} \right)^{2} + \left(\frac{\partial\lambda_{f}}{\partial l_{2}} \partial l_{2} \right)^{2} + \left(\frac{\partial\lambda_{f}}{\partial A_{f}} \partial A_{f} \right)^{2} \right\}^{\frac{1}{2}}$$

(25)

と表される。それぞれの誤差成分はPtホットフィルムの熱 伝導率計測と同様に、計器の測定精度から計算する。aに ついては最小二乗法による誤差である。 んはPtホットフ ィルムの熱伝導率の誤差である。Ptホットフィルムの熱伝 導率計測のときと同様に、300Kおける計測データから偏 導関数および誤差成分を求め、式(19)に代入し計算すると、 300Kで $\delta \lambda$ =5.32W/mKとなる。この値は測定結果の 6.6%であり、精度良く計測が行えるといえる。

6. アンダーエッチングの影響

6.1 アンダーエッチングによる温度上昇

製作したT字一体型ナノセンサのSEM画像からも分か るように、製作過程におけるSiO₂およびSi基板のエッチ ングにより、ヒートシンクとなるべきターミナル部の端 がアンダーエッチングされる。結果としてPt薄膜が宙に浮 いた状態になる(Fig.5)。アンダーエッチングされた部分 は基板へ熱が拡散しないため、もはやヒートシンクとは いえず、温度分布が発生すると考えられる。このアンダ

ーエッチングによる計測への影響を調べるために数値計 算を行った。計算モデルをFig.6 に示す。二次元有限差分 法を用いPt薄膜を対象に計算を行う。Fig.6 に示すように、 断熱境界および等温境界を仮定した。アンダーエッチン グされずに基板と接している部分(斜線)は基板のほうへ 熱が拡散していくため等温(300K)とした。Ptホットフィ ルム部分には通電加熱による発熱を与えている。Ptホット フィルムのサイズを幅w=400nm、長さ*l*=10µm、厚み *d*=40nm、熱伝導率を 30W/mKとし、ターミナル部の 計算領域は 10µm×10µmとした。

アンダーエッチングの幅は 1µm として計算し、ない場 合との比較を行った。アンダーエッチングがある場合と ない場合ともに Pt ホットフィルムの平均温度上昇が 10K になるよう発熱量を与えている。アンダーエッチングが ある場合のヒートシンクの温度分布図を Fig.7 に示す。ア ンダーエッチングある場合とない場合の Pt ホットフィ ルム上の温度分布を Fig.8 に示す。Fig.7 からわかるよう

Fig.8 Temperature distribution on Pt hotfilm

に、アンダーエッチングにより宙に浮いたヒートシンク 部分の温度が上昇し、その結果、Pt ホットフィルムの端 の温度が上昇している。このとき、中央付近の温度は減 少して、温度分布が緩やかになることが Fig.8 からわかる。 このとき、Pt ホットフィルムの端の温度上昇は 2.73K で あった。なお、さらにアンダーエッチングの幅が大きく なったとして、幅が 2µm の場合を計算したところ、端の 温度は 3.37K 上昇し、アンダーエッチングが進むほど計 測に与える影響は大きくなる。

6.2 アンダーエッチングが計測に与える影響

6.1節で述べたように、アンダーエッチングによりPt ホットフィルムの両端の温度が上昇する。Ptホットフィル ムの熱伝導率を求める際には、両端の温度を基板の設定 温度と等しいとして一次元熱伝導方程式(13)を解いて求 めている。しかし、実際には両端で温度上昇が起こって いるために、この影響を考える必要がある。両端の温度 が*T_{end}になっているとすると、一次元熱伝導方*程式から得 られる温度分布は

$$T(x_{h}) = -\frac{q_{v}}{2\lambda} x_{h}^{2} + \frac{q_{v}}{2\lambda} lx_{h} + T_{end}$$
(26)

であり、この式から平均温度上昇は

$$\Delta T_{L} = \frac{q_{\nu}l^{2}}{12\lambda} + \Delta T_{end}$$
⁽²⁷⁾

となる。ここで $\Delta T_{end}=T_{end}-T_0$ である。解析的に得られるPt ホットフィルムの熱伝導率は

$$\lambda = \frac{q_v l^2}{12(\Delta T_L - \Delta T_{end})}$$
(28)

となる。ここで $\Delta T_{end} \propto \Delta T_L$ であると考えることができる ので $\Delta T_{end} = \alpha \Delta T_L$ とおき

$$\lambda = \frac{q_{\nu}l^2}{12\Delta T_L(1-\alpha)} = \frac{l^2}{12\frac{\Delta T_L}{q_{\nu}}(1-\alpha)}$$
(29)

と書くことができる。Ptホットフィルムの熱伝導率が同じ 場合には、アンダーエッチングの影響により $\Delta T_L/q_\nu$ はアン ダーエッチングがない場合の $1/(1-\alpha)$ 倍になる。したがっ て、アンダーエッチングがある場合、測定されるPtホット フィルムの熱伝導率は $(1-\alpha)$ 倍になる。なお、この α はPt ホットフィルムの形状、アンダーエッチングの幅、熱伝 導率、加熱量によって決まる値であり、上記の二次元計 算を行って初めて導出される。

次に、ナノ材料の熱伝導率計測における影響について 考える。アンダーエッチングがある場合。Pt ホットフィ ルムの温度分布は、端からナノワイヤの接点まで、接点 からもう一方の端までそれぞれ、

$$T_{1}(x_{1}) = -\frac{q_{\nu}}{2\lambda}x_{1}^{2} + \left(\frac{q_{\nu}}{2\lambda}l_{1} + \frac{T_{j} - T_{end}}{l_{1}}\right)x_{1} + T_{end}$$
(30)

$$T_{2}(x_{2}) = -\frac{q_{v}}{2\lambda} x_{2}^{2} + \left[\frac{q_{v}}{2\lambda}(l_{1}+l) + \frac{T_{j} - T_{end}}{l_{1}-l}\right] x_{2} - \frac{q_{v}}{2\lambda} l_{1}l + \frac{T_{j}l - T_{end}l_{1}}{l - l_{1}}$$
(31)

となる。これらの式から平均温度上昇は

$$\Delta T_{L} = \frac{q_{v}(l_{1}^{3} + l_{2}^{3})}{12\lambda l} + \frac{T_{j} - T_{0}}{2} + \frac{\Delta T_{end}}{2}$$

となる。その結果、解析的に得られるナノワイヤの熱伝 導率は

$$\lambda_{f} = \frac{l_{f}l^{4}\lambda A_{h} - 12l_{f}l^{2}\lambda^{2}A_{h}\left(\frac{\Delta T_{L} - \frac{\Delta T_{end}}{2}}{q_{v}}\right)}{12l_{1}l_{2}A_{f}l\lambda\left(\frac{\Delta T_{L} - \frac{\Delta T_{end}}{2}}{q_{v}}\right) - l_{1}^{4}l_{2}A_{f} - l_{1}l_{2}^{4}A_{f}}$$
(32)

となる。ここでも、Ptホットフィルムの熱伝導率の測定の 場合と同様に $\Delta T_{end} \propto \Delta T_L$ であると考えることができる ので $\Delta T_{end} = \gamma \Delta T_L$ とおき

$$\lambda_{f} = \frac{l_{f}l^{4}\lambda A_{h} - 12l_{f}l^{2}\lambda^{2}A_{h}\frac{\Delta T_{L}}{q_{v}}\left(1 - \frac{\gamma}{2}\right)}{12l_{1}l_{2}A_{f}l\lambda\frac{\Delta T_{L}}{q_{v}}\left(1 - \frac{\gamma}{2}\right) - l_{1}^{4}l_{2}A_{f} - l_{1}l_{2}^{4}A_{f}}$$
(33)

と表すことができる。Ptホットフィルムの熱伝導率を計測 する時と同様にアンダーエッチングがある場合には実験 により得られるΔT_l/q_vが変化する。SiCを想定し、周囲温 度 300K、 l_h =10.0µm、 l_1 = l_2 =5.0µm、 l_f =5.0µm、 λ_h =30W/mKの場合、直径が 100nm、熱伝導率が 100W/mKのナノワイヤの熱伝導率を計算すると、アンダ ーエッチングの効果によって真の値より約 17%小さい値 として得られる。また、カーボンナノチューブを想定し て、直径が 10nmで熱伝導率が 1000W/mKの場合も同様 であったが、常に条件を与えて二次元計算により確認す ることが必要であると考える。

7. 接触熱抵抗

本計測方法ではナノワイヤとPtホットフィルムは EBIDを用いて接着を行っている。具体的にはPtホットフ ィルムの平面に、円柱であるナノワイヤを押し当てた状 態でそれらの周囲にアモルファスカーボンを堆積させて いる。接触熱熱抵はPtホットフィルムとナノワイヤの間の 平均距離を*&、*アモルファスカーボンの熱伝導率を*λc、*接 触面積を*Ac*とすると、

$$Rt_{c} = \frac{\delta_{c}}{\lambda_{c}A_{c}}$$
(34)

と近似的に表せる[8]。ナノワイヤが円柱に近いと考える と、Ptホットフィルムとナノワイヤの間の平均距離 δ_c はナ ノワイヤの半径をrとしてr/2 と見積もることができる。 また、ナノワイヤとPtホットフィルムが接している長さに わたって熱伝導に寄与していると考えると伝熱面積は $A_c=\pi r l_c$ と表せる。 l_c はPtホットフィルムと接触している部 分ナノワイヤの長さ(接触長さ)である。これらから、接触 熱抵抗は

$$Rt_c = \frac{1}{2\lambda_c \pi l_c} \tag{36}$$

と表すことができる。一方、ナノワイヤ自体の熱抵抗は

$$Rt_f = \frac{l_f}{\lambda_f A_f} \tag{35}$$

となる。接触熱抵抗とナノワイヤの熱抵抗をあわせた全 熱抵抗は

$$Rt_{total} = Rt_c + Rt_f = \frac{1}{2\lambda_c \pi l_c} + \frac{l_f}{\lambda_f \frac{\pi D_f^2}{4}}$$
(36)

と表される。この式から接触熱抵抗の相対的影響は*l*_cが小 さいほど、*l*_iが小さいほど,rが大きいほど,λ_i大きいほど 大きくなることが分かる。

SiCの熱伝導率計測結果において、Fig.3 より l_c = 150nm、 l_f = 5 μ m、r = 0.07 μ mとし、アモルファスカーボンの熱伝導率を我々が計測した値 λ_c = 0.7W/mK[13]を用いて計算すると、SiCナノワイヤの熱伝導率は接触熱抵抗を考慮した場合、考慮しなかった場合の約 23%大きな値になる。ただし、Ptホットフィルムの幅 491nmがすべて接触長さになるように接着したとするとこの誤差は約9%まで下げることができる。

8. まとめ

ナノワイヤ材料の熱伝導率を正確に計測するために、T 字一体型ナノセンサの開発し、計測例としてSiCナノワイ ヤの熱伝導率測定結果を示した。この方法の精度を把握 するために計測の誤差解析を行った。解析の結果、SiCナ ノワイヤの計測において、熱伝導率の計測誤差は300Kで *δ*λ=5.32 W/mKである。これは測定結果の6.6%であり、 精度良く計測が行えることが明らかになった。また、T字 一体型ナノセンサの製作において、避けることが困難な アンダーエッチングの影響を考察した。アンダーエッチ ングがある場合に得られるナノワイヤの熱伝導率は約 17%小さい値になり、補正する必要があることがわかっ た。さらに接触熱抵抗についても見積もった。SiCナノワ イヤの熱伝導率は接触熱抵抗を考慮した場合、考慮しな かった場合の9%以上大きな値になる。今後は見積もられ た誤差を適切に補正することにより、T字一体型ナノセン サを用いて、より信頼性の高いナノワイヤ材料の熱伝導 率計測が可能となる。

[謝辞]

本研究における T 字一体型ナノセンサの製作には、九州 大学コラボステーション2の電子線描画装置を利用した。 計測を行った SiC ナノワイヤは Warsaw 大 Huczko 教授に 提供していただいた。九州大学生田氏には T 字一体型ナ ノセンサの製作に、西山氏には SiC ナノワイヤの TEM 観 察に助力をいただいた。また、九州大学永山教授には多 くの面で有益な議論していただいた。

NOMENCLATURE

- A_f : cross section area of nanowire, m²
- δA_f : error element of A_f , m²
- A_h : cross section area of Pt hotfilm, m²
- δA_h : error element of A_h , m²
- A_c : contact area, m²
- D_f : diameter of nanowire, m
- *I* : heating current, A
- N : number of measuring points
- Q : heating rate, W
- R : electrical resistance, Ω
- R_0 : electrical resistance at 273.2K, Ω
- R_n : electrical resistance at $q_v=0, \Omega$
- Rt_c : thermal contact resistance, K·W⁻¹
- Rt_f : thermal resistance of nanowire, K·W⁻¹
- Rt_{total} : total thermal resistance, K·W⁻¹
- δR_n : error element of, K·W⁻¹
- δR_0 : error element of, K·W⁻¹
- T : temperature distribution (function of x_h), K
- T_0 : initial temperature, K
- δT_0 : error element of T_0 , K
- T_1 : temperature distribution (function of x_1), K
- T_2 : temperature distribution (function of x_2), K
- T_f : temperature distribution (function of x_f), K
- ΔT_L : average temperature rise of Pt hotfilm, K
- ΔT_{end} : temperature rise of Pt hotfilm edge, K
- V : voltage, V
- a : gradient ($\Delta T/Q$), K·W⁻¹
- δa : error element of $a, \mathbf{K} \cdot \mathbf{W}^{-1}$
- b : gradient ($\Delta R/Q$), $\Omega \cdot W^{-1}$
- δb : error element of $b, \Omega \cdot W^{-1}$
- *d* : thickness of Pt hotfilm, m
- δd : error element of d, m
- l : length of Pt hotfilm, m
- δl : error element of l, m
- l_1 : length of left-hand of Pt hotfilm, m
- δl_1 : error element of l_1 , m
- l_2 : length of right-hand of Pt hotfilm, m
- δl_2 : error element of l_2 , m
- l_f : length of nanowire, m
- δl_f : error element of l_f , m
- l_c : length of contact area, m
- q_{v} : volumetric heat generation rate, W·m⁻²
- q_f : heat flux of nanowire, W·m⁻²
- *r* : radius of nanowire, m
- *w* : width of Pt hotfilm, m
- δw : error element of w, m
- x_h : coordinate of Pt hotfilm, m
- x_1 : coordinate of Pt hotfilm left-hand side, m

- x_2 : coordinate of Pt hotfilm right-hand side, m
- x_f : coordinate of nanowire, m
- ΔR : electrical resistance change, Ω
- α : ratio of ΔT_{end} and ΔT_L at measuring thermal conductivity of Pt hotfilm
- β : temperature coefficient of resistance, K⁻¹
- γ : ratio of ΔT_{end} and ΔT_L at measuring thermal conductivity of nanowire
- λ : thermal conductivity of Pt hotfilm, W·m⁻¹ K⁻¹
- $\delta \lambda$: error element of λ , W·m⁻¹ K⁻¹
- λ_f : thermal conductivity of nanowire, W · m⁻¹ K⁻¹
- $\delta \lambda_f$: error element of λ_f , W·m⁻¹ K⁻¹
- λ_c : thermal conductivity of amorphous carbon, W·m⁻¹K⁻¹

参考文献

- M.S.Dresselhaus, Y.-M.Lin, O. Rabin, G.Dresselhaus;
 Microscal Thermophysical Enginnerung,7(2003),207-219
- [2] 齋藤弥八編;カーボンナノチューブの材料科学入門 コロナ社,2005.
- [3] J.Hone, M.Whitney, C.Piskoti. A.Zettl; Phys.Rev.B, 59(1999),R2514-R2516.
- [4] J.Hone, M.C.Llaguno, N.M.Nemes, A.T.Johnson,
 J.E.Fischer, D.A.Walters, M.J.Casavant, J.Schmidt,
 R.E.Smalley; Appl.Phys.Lett, 77 (2000),666-668.
- [5] J.Hone, M.C.Llaguno, M.J.Biercuk, A.T.Johnson,
 Z.Benes, J.E.Fischer; Appl.Phys.A:Mater.Sci.Process,74 (2002),339-343.
- [6] P.Kim, L.Shi, A.Majumder, P.L.McEuen; Phys.Rev.Lett., 87(2001),215502.
- [7] D.Li, Y.Wu, P.Kim, L.Shi, P.Yang, A.Majumder; Appl.Phys.Lett., 83(2003),2934-2936.
- [8] L.Shi, D.Li, C.Yu, W.Jang, D.Kim, Z.Yao, P.Kim,A. Majumder; J.Heat.Trans., 125(2003),881-888.
- [9] X.Zhang, S.Fujiwara, M.Fujii; Int. J. Thermophys, 21(2005),965
- [10] M.Fujii, X.Zhang, H.Xie, H Ago, K.Takahashi, T.Ikuta,H.Abe, T.Shimizu; Phys.Rev.Lett, 95(2005),065502
- [11] K.Takahashi, Y.Ito, T.Ikuta, T.Nishiyama, M.Fujii, X.Zhang, A Huczko; Proc. ATPC, 159(2007)
- [12] G.A.Slack; J.Appl. Phys. **35**(1964),3460
- [13] N. Hilmi, K. Takahashi, T. Ikuta, T. Nishiyama, K.Nagayama, M. Fujii, X. Zhang; Proc. ATPC 166(2007)

[Received Jan.17, 2008, Accepted Mar.31,2008]