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Photothermal radiometry has been widely used to measure the thermal diffusivity of bulk materials.
In the case of thin plates and filaments, a one-dimensional heat propagation model including heat
losses has been developed, predicting that the thermal diffusivity can be obtained by recording both
the surface temperature amplitude and phase profile slopes �“slope method”�. However, this method
has given highly overestimated values of the thermal diffusivity of poor-conducting films and
filaments. In this paper we analyze the effect of the experimental factors affecting the thermal
diffusivity measurements of thin plates and filaments using infrared thermography, in order to
establish the experimental conditions needed to obtain accurate and reliable values of the diffusivity
of any kind of material using the slope method. We present the calculations of the surface
temperature of thin isotropic and anisotropic plates heated by a modulated and tightly focused laser
beam, showing that the slope method is also valid for this kind of pointlike heating. Special attention
is paid to the effect of surface heat losses �convective and radiative� on the diffusivity measurements
of small-dimension and poor-conducting materials. Lock-in thermography measurements performed
in the best experimental conditions on a wide set of samples of different thermal properties �thin
isotropic and anisotropic plates and filaments� confirm the validity of the slope method to measure
accurately the thermal diffusivity of samples of these shapes. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3176467�

I. INTRODUCTION

Modulated photothermal radiometry �PTR� consists in
illuminating the sample by an intensity modulated light beam
and detecting the oscillating component of the temperature
rise by means of an infrared detector connected to a lock-in
amplifier. As the temperature rise depends on the thermo-
optical properties of the sample, PTR has been widely used
to measure the thermal diffusivity of a wide variety of ma-
terials. Moreover, the development of infrared video cameras
with fast data acquisition �thousands of images/s� and high
lateral resolution �tens of micrometer� provides powerful
tools for the fast thermal characterization of large samples.
The name of photothermal radiometry refers to the use of a
single infrared detector, while lock-in thermography is used
when the infrared emission is collected by a focal plane array
of infrared detectors.

By tightly focusing the light beam onto the sample sur-
face and by performing a radial scan of the PTR signal, the
thermal diffusivity �D� can be retrieved. In the absence of
heat losses, there is a linear relation between the phase of the
surface temperature ��� and the lateral distance to the heat-
ing spot, with a slope m=−��f /D, from which the thermal
diffusivity can be obtained �“phase method”�.1,2 However,
the PTR signal is not only proportional to the surface tem-
perature but it is also affected by the diffraction introduced
by the detection optics and by the nonlinear effects produced

by the sample heating. The result is an increase of the slope
m �i.e., D is overestimated� for moderate heating powers, and
even a loss of the linearity for strong heating powers.3–7 The
disturbing effects of diffraction and sample heating increase
for low thermal diffusivity materials and high frequencies. A
simple way to overcome this issue is to work at low modu-
lation frequencies. However, in this case the presence of heat
losses by radiation and convection modifies the temperature
profile of the sample with respect to that obtained from a
pure conductive model. This effect is especially strong when
measuring the thermal diffusivity of thin plates or thin fila-
ments since heat losses increase with the surface to volume
ratio. That is the reason why heat losses are negligible for
bulk samples �except at very low modulation frequencies�
but become noticeable for thin plates and filaments.

In the case of one-dimensional �1D� heat propagation,
i.e., the illumination covers the full width of a thin sample, it
has been demonstrated that heat losses modify the slope of
both the phase, �, and the natural logarithm of the amplitude
of the oscillating temperature, ln�T�, in such a way that the
product of both slopes cancels the effect of heat losses: m�

�mln�T�=−�f /D.8–10 This method works very well for good
thermal conductors �metals, alloys, SiC, etc.�,2,8–11 but it fails
when dealing with thin films and filaments of low thermal
conductivity. For instance, the thermal diffusivities of a
76 �m thick plastic packing film and a 25 �m thick poly-
imide film were found to be 0.52 and 1.12 mm2 /s,
respectively.2,8 Both values are very much higher than the
typical thermal diffusivity of polymers �0.1–0.2 mm2 /s�.a�Electronic mail: agustin.salazar@ehu.es.
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On the other hand, thermal diffusivity values of human hair
in the range of 2–4 mm2 /s, an anomalously high value for a
biological sample, have been reported.12

The aim of this work is to identify the influence of the
experimental conditions on the thermal diffusivity measure-
ments using the slope method, in order to extend its applica-
bility to materials of any kind of thermal properties and
shapes. We focus on thin plates and filaments, because of the
great interest of characterizing the thermal properties of very
thin objects, and because the effect of heat losses is meant to
strongly affect the surface thermal field. We are especially
interested in understanding and overcoming the overestima-
tions of the thermal diffusivity of poor thermal conductors
that have been found in literature. In this paper, we present
the calculation of the temperature of isotropic and aniso-
tropic thin plates �two dimensional �2D� heat propagation��,
including the effect of heat losses, when they are illuminated
by a focused and modulated light beam. It will be shown
that, as already demonstrated in 1D propagation, the effect of
radiation can be overcome by using both the amplitude and
the phase of the PTR signal in the case of 2D heat propaga-
tion �pointlike illumination of a thin sample�, but not in the
case of three-dimensional heat propagation �pointlike illumi-
nation of a thick sample�. Moreover, it will be demonstrated
that the effect of convection is extremely high for this kind
of sample shapes, but it can be overcome by enclosing the
sample in a vacuum chamber. The effects of other experi-
mental factors and limitations �such as diffraction, finite
sample dimensions, and black layer used to improve the in-
frared emissivity� on the thermal diffusivity obtained from
the slope method will be discussed in detail, for all kind of
materials and modulation frequencies. Systematic lock-in
thermography measurements performed with the optimum
experimental conditions on thin plates and thin filaments of
both good �metals and alloys� and poor �polymers and hu-
man hair� thermal conductors, as well as anisotropic materi-
als, confirm the theoretical model and the ability of this tech-
nique to provide accurate thermal diffusivity measurements,
provided that the restrictions imposed by the model are ex-
perimentally fulfilled.

II. THEORY

In this section, the oscillating temperature of an opaque
sample illuminated by a modulated and tightly focused laser
beam is calculated. Three geometries are studied: an isotro-
pic slab, an anisotropic slab and a thin wire.

A. Isotropic slab

Let us consider a slab of thickness �, illuminated by a
laser beam of power Po with a Gaussian profile of radius a
�at 1 /e2� and modulated at a frequency f ��=2�f�. The ge-
ometry of the problem is shown in Fig. 1. Due to the cylin-
drical symmetry the problem, the oscillating component of
the temperature can be written in the Hankel space as13

Tac�r,z� = �
0

�

�J0��r��Ae�z + Be−�z�d� , �1�

where � is the Hankel variable, J0 is the Bessel function of
the zeroth order and �2=�2+	2, being 	=�i� /D the ther-
mal wave vector. A and B are constants to be determined
according to the boundary conditions, heat flux continuity, at
the sample surfaces:

K� �Tac

�z
�

z=0
+ h0Tac�z=0 =

Po

4�
�

0

�

�J0��r�e−��a�2/8d� , �2a�

K� �Tac

�z
�

z=−�

− h1Tac�z=−� = 0, �2b�

where K is the thermal conductivity of the sample and h0 and
h1 are the heat transfer coefficients at the upper and lower
surfaces, respectively, which account for heat losses. It is
assumed that the temperature rise is small, in such a way that
the rate of heat dissipated from the slab surfaces can be re-
garded as a linear function of the temperature. The second
term in Eq. �2a� is the Hankel transform of the heating power
distribution of a Gaussian laser beam �Po /�a2�e−2r2/a2

. By
substituting Eq. �1� into Eq. �2� the constants A and B are
determined and the sample temperature is obtained

Tac�r,z� =
Po

4�K
�

0

�

�Jo��r�
e−��a�2/8

�

�	 �1 + H1�e��e�z + �1 − H1�e−��e−�z

�1 + H0��1 + H1�e�� − �1 − H0��1 − H1�e−��
d� ,

�3�

where H0=h0 /K� and H1=h1 /K�. In this calculation, the
heat conduction to the gas surrounding the slab is neglected
due to its low thermal conductivity.

Two extreme cases of practical interest are as follows:

�a� The slab is thermally thin �i.e., �
�=�D /�f , the ther-
mal diffusion length�. Accordingly, e����1��� and
h0�h1�h. Now Eq. �3� reduces to

Tac�r� =
Po

4�K�
�

0

�

�Jo��r�
e−��a�2/8

��2 d� , �4�

where ��2=�2+	�2, with 	�2=	2+ �2h /K��. Note that
the oscillating temperature does not depend on z. It is
worth noting that for a given value of the heat transfer
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FIG. 1. Diagram of a slab illuminated by a focused light beam.
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coefficient h, the effect on the sample temperature in-
creases for thin samples of low thermal conductivity. In
particular, for a tightly focused laser beam �a=0� Eq.
�4� reduces to

Tac�r,a = 0� =
Po

4�K�
Ko�	�r� , �5�

where K0 is the zeroth order of the Kelvin function, and
represents a cylindrical thermal wave propagating
through the radial direction. Using the asymptotic ap-
proach for large r values14 Eq. �5� reduces to

Tac�r → �,a = 0� �
Po

4�K�
� �

2	�

e−	�r

�r

=
Po

4�K�
��

2

1

�	R� + i	I�

e−	R�r

�r
e−i	I�r, �6�

where 	R� and 	I� are the real and the imaginary parts of
	�. As can be seen in Eq. �6�, the phase of the tempera-
ture has a linear dependence on r whose slope is
m�=−	I�. On the other hand, the natural logarithm of
the temperature amplitude multiplied by �r also has a
linear dependence on r whose slope is mln��rT�=−	R� .
As can be seen both slopes are affected by heat
losses, in fact mln��rT��m�,. Accordingly, if one tries
to obtain the thermal diffusivity from the slope of
only the amplitude �phase�, the value obtained will
be overestimated �underestimated�. However, their
product mln��rT��m�=−�f /D is independent of heat
losses and allows to obtain the thermal diffusivity of
the thin slab. Finite laser spot sizes �a�0� only af-
fect the shape of the temperature amplitude and
phase close to the laser spot, while at large r dis-
tances both slopes remain unchanged.

�b� The material is thermally thick �i.e., ��=�D /�f�. In
this case e−���0, and according to Eq. �3� the surface
temperature is given by

Tac�r,z = 0� =
Po

4�K
�

0

�

�Jo��r�
e−��a�2/8

� +
ho

K

d� . �7�

Equation �7� has no analytical solution, even in the
case of negligible laser beam radius �a=0�. However,
from numerical simulations several conclusions are ob-
tained. In the absence of heat losses, the natural loga-
rithm of the temperature amplitude multiplied by r and
the phase have a linear dependence on r with the same
slope m=−��f /D. The effect of heat losses is to
change both slopes in the same manner as happens
with thin slabs. However, this change in slope is not
the same for the amplitude as for the phase and
therefore their product does not give the thermal dif-
fusivity of the sample �mln�rT��m��−�f /D�. Any-
way, it is worth mentioning that the effect of heat
losses in thick samples is small even for samples of
low thermal conductivity. Only at very low frequen-
cies �f �0.1 Hz� these losses should be taken into
account.

B. Anisotropic slab

Now we consider the same slab as in Sec. II A, but with
a thermal conductivity varying with the direction. Let the
axes �x ,y ,z� in Fig. 1 be the principal axes of the anisotropic
sample with the corresponding principal thermal conductivi-
ties �Kx ,Ky ,Kz� and thermal diffusivities �Dx ,Dy ,Dz�. Due to
the lack of cylindrical symmetry the ac component of the
temperature can be expressed in the Fourier space as15

Tac�x,y,z� = �
−�

� �
−�

�

e−i�x�+y���A�e�z + B�e−�z�d�d� , �8�

where � and � are the Fourier variables, and �2= �Dx�
2

+Dy�
2+ i�� /Dz. A� and B� are constants to be determined

from the heat flux continuity at the sample surfaces:

Kz� �Tac

�z
�

z=0
+ h0Tac�z=0

=
Po

4�
�

−�

� �
−�

�

e−i�x�+y��e−��2+�2�a2/8d�d� , �9a�

Kz� �Tac

�z
�

z=−�

− h1Tac�z=−� = 0, �9b�

where the second term in Eq. �9a� is the Fourier transform of
the heating power distribution. By substituting Eq. �8� into
Eqs. �9� the constants A� and B� are determined and the
sample temperature is obtained

Tac�x,y,z� =
Po

4�Kz
�

−�

� �
−�

�

e−i�x�+y��e
−��2+�2�a2/8

�

�	 �1 + H1��e
��e�z + �1 − H1��e

−��e−�z

�1 + Ho���1 + H1��e
�� − �1 − H0���1 − H1��e

−��
d�d� ,

�10�

where H0�=h0 /Kz� and H1�=h1 /Kz�. Now we analyze two
extreme cases of practical interest:

�a� If the slab is thermally thin �i.e., �
�z=�Dz /�f� Eq.
�10� reduces to

Tac�x,y� =
Po

4��c�
�

−�

� �
−�

�

e−i�x�+y��

�
e−��2+�2�a2/8

Dx�
2 + Dy�

2 + i� +
2h

�c�

d�d� , �11�

where �c=Kx /Dx=Ky /Dy==Kz /Dz is the heat capacity.
Note that the temperature does not depend on Kz or Dz.
For a highly focused laser beam �a=0� Eq. �11� has
analytical solution for the temperature along the prin-
cipal axes

Tac�x,a = 0� =
Po

2�c�

1
�DxDy

Ko�	x�x� , �12a�
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Tac�y,a = 0� =
Po

2�c�

1
�DxDy

Ko�	y�y� , �12b�

where 	x,y�2 = �i� /Dx,y�+ �2h /Kx,y��. Using the
asymptotic approach for large x and y values,14 Eq.
�12� reduce to

Tac�x → �,a = 0� �
Po

2�c�

1
�DxDy

� �

2	x�

e−	x�x

�x

=
Po

2�c�

1
�DxDy

��

2

1

�	xR� + i	xI�

e−	xR� x

�x
e−i	xI� x,

�13a�

Tac�y → �,a = 0� �
Po

2�c�

1
�DxDy

� �

2	y�

e−	y�y

�y

=
Po

2�c�

1
�DxDy

��

2

1

�	yR� + i	yI�

e−	yR� y

�y
e−i	yI� y ,

�13b�

where 	xR� , 	yR� and 	xI� , 	yI� are the real and the imagi-
nary parts of 	x� and 	y�, respectively. As it happened
with the isotropic thin slab, the phase and the natural
logarithm of the temperature amplitude multiplied by
�x or �y have a linear dependence on the distance in
such a way that the product of the slopes is equal to
−�f /Dx or −�f /Dy, indicating that it is independent
of heat losses. Accordingly, the thermal diffusivity
along the principal axes can be obtained. Finite laser
spot sizes �a�0� do not affect the slopes.

�b� The material is thermally thick �i.e., ��z=�Dz /�f�.
In this case e−���0, and according to Eq. �3� the
surface temperature is given by

Tac�x,y,z = 0�

=
Po

4�Kz
�

−�

� �
−�

�

e−i�x�+y��e
−��2+�2�a2/8

� +
h0

Kz

d�d� .

�14�

Numerical simulations of Eq. �14� indicate that in the
absence of heat losses, the natural logarithm of the tempera-
ture amplitude multiplied by x or y and the phase have a
linear dependence on the distance with the same slope
−��f /Dx or −��f /Dy. For non-negligible heat losses, both
slopes are modified in such a way that their product is not
independent of heat losses. Anyway, as in the case of isotro-
pic samples, the effect of heat losses on thick samples is
almost negligible.

C. Thin filament

Now we recall the expression for the oscillating tem-
perature of a thin filament of radius b, illuminated by a fo-
cused laser beam modulated at a frequency f �see Fig. 2�.
Outside the illuminated region, a perfectly 1D temperature
oscillation is obtained whose value is given by10

T�x� =
To

K	�
e−	�x =

To

K

1

	R� + i	I�
e−	R�xe−i	I�x, �15�

where To is a constant depending on the laser power and
shape, and on the radius of the wire, 	�2=	2+ �2h /Kb�, and
	R� and 	I� are the real and the imaginary parts of 	�. It is
worth noting that this solution is valid not only for opaque
wires but for transparent ones as well. As for thin slabs, the
slopes of both the natural logarithm of the amplitude and the
phase of the temperature are affected by heat losses, being
m��mln�T�, while its product m��mln�T�=−�f /D is inde-
pendent of them, and therefore the thermal diffusivity of the
fiber can be obtained in a easy manner. As also occurs in the
case of slabs, if heat losses are negligible �h=0� the real and
imaginary parts of 	 are equal and the natural logarithm of
the amplitude and the phase show the same slope, any of
them giving the correct diffusivity of the material.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We have used the slope method presented in Sec. II to
measure the in-plane/longitudinal thermal diffusivity of thin
sheets/filaments using a lock-in thermography setup, whose
scheme is depicted in Fig. 3. Materials exhibiting very dif-
ferent diffusivity values, from polymers to metals, including
anisotropic samples, have been studied. An acousto-optically
modulated laser beam �COHERENT, model Verdi, �
=532 nm� focused onto the sample surface by a spherical
lens of 5 cm focal length has been used to heat the sample.
The infrared emission from the sample surface is captured
by an infrared camera �CEDIP, model JADE J550M,
3.6–5.0 �m� provided with a lens of 50 mm focal length.
This lens has a minimum working distance of 23.5 cm,
which gives a spatial resolution of 137 �m, i.e., each pixel
measures the average temperature over a square on the
sample of 137 �m in side. The lock-in software provided
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FIG. 2. Diagram of a filament illuminated by a focused light beam.
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FIG. 3. Block diagram of the experimental setup.
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with the camera gives the amplitude and phase of the oscil-
lating temperature. To improve the signal to noise ratio we
record 4000 images for each experiment. As the noise level
is inversely proportional to the square root of the total num-
ber of images16 we obtain a temperature noise level as low as
1 mK.

In the case of slabs, the measurements were carried out
by heating the front face of the sample and recording the
infrared emission from the rear surface. In the case of fila-
ments, the laser is focused on one side of the sample and the
infrared radiation is collected in the direction perpendicular
to the laser beam, in order to prevent the laser beam to reach
the camera lens. On the other hand, to increase the absorp-
tion to the exciting light and the infrared emissivity, slabs
were covered by a 200 nm thick graphite layer, either on
both sides �metals and alloys� or only on the surface facing
the camera �polymers�. The filaments used in this work were
not covered since the signal to noise ratio was high enough
for all kind of samples.

A. Effect of the surrounding air

We have performed lateral scans of the surface tempera-
ture at different frequencies �in the range from 0.1 Hz to 1
kHz� of a whole set of foils and wires. According to the
theoretical results presented in Sec. II, the thermal diffusivity
should remain constant as a function of the modulation fre-
quency except at high frequencies, where the effects of dif-
fraction are significant. While this prediction was fulfilled by
good thermal conductors, whose thermal diffusivity was ob-
tained accurately, an anomalous behavior was found for poor
conductors. As a representative example, in Fig. 4�a� we
show the thermal diffusivity obtained from the slopes of the
amplitude and phase of the surface temperature, as well as
the diffusivity obtained from the product of both slopes as a
function of the modulation frequency for a monofilament of
150 �m of diameter of polyeter-eter-ketone �PEEK�, a well
known polymer. As expected, the diffraction effects are sig-
nificant at high frequencies leading to an overestimation of
the diffusivity, as observed by other authors.3–7 However, at
frequencies below 10 Hz the thermal diffusivity is almost
constant, but its value �about 0.80 mm2 /s� is significantly
higher than the value found in the literature �0.19 mm2 /s�.17

Moreover, measurements performed in thinner PEEK
samples �both fibers and films� show the same behavior as
that shown in Fig. 4�a�, but leading to an even higher over-
estimation of the thermal diffusivity, which reaches D
=1.2 mm2 /s for the fiber with a diameter of 34 �m. This
overestimation of the diffusivity of polymers is similar as
that found by other authors.2,8 These results indicate that, in
our experiment, the slopes of the amplitude and phase do not
compensate for the surface heat losses, the situation becom-
ing more dramatic for the higher surface to volume ratio
samples, where heat losses are more important.

In order to discriminate the source of this discrepancy
we placed the sample in a vacuum chamber provided with
sapphire windows, which are transparent to the infrared ra-
diation. In Fig. 5 we show the amplitude and phase of the
surface temperature of a 34 �m PEEK fiber at a modulation
frequency of 0.12 Hz. Measurements were performed at

room pressure �solid symbols� and at 3�10−3 mbar �open
symbols�. Several aspects deserve comment on this figure.
First, the temperature rise is higher in vacuum due to the
reduction in convective heat losses. Second, the signal-to-
noise ratio is highly increased in vacuum since natural con-
vection is a rather alleatory process introducing noise in the
data. Third, the distortion of the amplitude and phase straight
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FIG. 4. Thermal diffusivity obtained from the slope of the surface tempera-
ture amplitude �squares�, phase �circles�, and from the product of the slopes
�solid symbols�, as a function of the modulation frequency. �a� 150 �m
diameter PEEK filament in air, and �b� the same filament in vacuum
�3�10−3 mbar�.
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FIG. 5. Natural logarithm of the amplitude and phase of the surface tem-
perature of a 34 �m diameter PEEK filament measured in vacuum �open
symbols� and in air �solid symbols� at a modulation frequency of 0.12 Hz.
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lines profiles is absent in vacuum, allowing a more accurate
determination of the thermal diffusivity from the slope
method. Finally, the change in slope in vacuum of both, the
amplitude and the phase of the surface temperature leads to
a reduction of the thermal diffusivity overestimation
�0.50 mm2 /s in vacuum instead of 1.2 mm2 /s in air�. It is
worth noting that although convection has been eliminated,
the slopes of amplitude and phase remain very different, in-
dicating that radiative heat losses are significant.

To better illustrate the effect of convection we have mea-
sured the thermal diffusivity of a 25 �m thick PEEK film as
a function of the air pressure inside the vacuum chamber,
from room pressure down to 10−5 mbar. Measurements have
been performed at 0.12 Hz. The results are depicted in Fig. 6,
showing a sigmoidal shape, meaning that the effect of the
surrounding air saturates both at high and low pressures.
Keeping the sample in vacuum i.e., removing the convective
heat losses �pressure bellow 10−2 mbar�, the correct thermal
diffusivity of the PEEK film �0.19 mm2 /s� is obtained. In
Fig. 4�b� we show the thermal diffusivity measurements of
the same PEEK monofilament as in Fig. 4�a�, but performed
in vacuum. As expected, in both cases the difference in the
diffusivities obtained from the amplitude slope and from the
phase slope decrease as the modulation frequency increases
but, more important, these differences are smaller in vacuum
than in air, the only heat loss source in this case being the
radiative one.

In Table I we show the measured values of the thermal
diffusivity of several films and fibers of PEEK, in air and in
vacuum �3�10−3 mbar�. As can be seen the overestimation
of the thermal diffusivity of the films is completely removed
as convection losses are suppressed. These results confirm
that convective heat losses are not properly described by the

linear term usually used to account for surface losses �hT in
Eqs. �2� and �9��. The high value of the thermal diffusivity of
the PEEK filaments will be discussed later in this section.

B. Effect of the graphite layer

For all measurements performed with thin slabs a very
thin graphite layer of about 200 nm was deposited by the
sputtering method in order to improve both the absorption of
the laser beam and the infrared emission. Its influence on the
thermal diffusivity values obtained is negligible. However,
care must be taken when using thicker black layers. Actually,
covering the samples with a black paint layer is much
quicker and cheaper than deposing graphite by the sputtering
method, but the thickness of the paint layer is hardly thinner
than 10 �m. In that case, its influence on the thermal diffu-
sivity of films thinner than 100–150 �m is not negligible.
By painting the PEEK films of thicknesses 125, 75, and
25 �m, with a�10 �m paint layer, we have obtained over-
estimated thermal diffusivity values of 0.21, 0.25, and
0.28 mm2 /s, respectively. For the 250 �m thick PEEK foil
the accurate value was found instead. On the contrary, for
metallic foils 100 �m thick, the contribution of the paint
layer is almost insignificant since the effective diffusivity of
the two layer system is dominated by the high diffusivity
material. Only in the case of the thinnest metallic sample
�10 �m thick Ni foil� a significant underestimations of the
diffusivity was found.

C. Long distance approximation

The use of the slope method requires guaranteeing that
the amplitude and phase behave linearly as a function of r,
i.e., experimental data are taken far away from the excitation
spot. As an example, we show in Fig. 7 the calculated lateral
scan of the phase and of ln��rT� for a nickel foil 100 �m
thick. Calculations have been performed by using Eq. �3�
with f =1 Hz and a=20 �m. Simulations for both, adiabatic
boundary conditions �h=0, solid line� and radiative heat
losses �h=2 W /m2 K, dashed line� are performed. As can be
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FIG. 6. Thermal diffusivity dependence on the air pressure for a 25 �m
thick PEEK film.

TABLE I. Thermal diffusivity �mm2 /s� of several PEEK films and filaments
measured in air and in vacuum. The literature value is 0.19 mm2 /s
�Ref. 17�. The uncertainty is 5%.

Shape In air In vacuum

Film �=250 �m 0.20 0.19
Film �=125 �m 0.26 0.19
Film �=75 �m 0.30 0.19
Film �=25 �m 0.45 0.19
Filament 2b=150 �m 0.75 0.50
Filament 2b=34 �m 1.2 0.50
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FIG. 7. Calculated amplitude �upper curves� and phase �lower curves� of the
surface temperature of a 100 �m thick nickel foil at f =1 Hz, with a
=20 �m. Three cases are considered: Infinite foil without heat losses �solid
line�, infinite foil with h=2 W /m2 K �dashed line� and finite foil
�16�7 mm2� with h=2 W /m2 K �dotted line�.
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seen the linear behavior only appears at distances from the
heating spot verifying r��. If experimental points closer to
the heating spot were used in the linear regression, an inac-
curate thermal diffusivity value would be obtained.

D. Boundary effects

More disturbing can be the effect of the sample bound-
aries. The slope method requires the use of low frequencies
to avoid the diffraction effects, especially for poor thermal
conductors. Under these conditions, the thermal wave propa-
gates a long distance from the exciting region before vanish-
ing, in such a way that it can reach the lateral boundaries of
the sample. The dotted lines in Fig. 7 show the calculations
of the amplitude and phase of the surface temperature for the
same nickel foil, with radiative heat losses �h=2 W /m2 K�,
but with a finite lateral size of 16�7 mm2. The amplitude
and phase profiles correspond to the shortest dimension of
the sample. The effect of the sample boundaries has been
accounted for by using the image method,18 which requires
adiabatic boundary conditions at the sample side surfaces.
This assumption is plausible since the sample sides have a
very small area �sample thickness is 100 �m� for the heat to
be efficiently transferred from the sample contour. As can be
seen, the slope of the phase decreases and that of ln��rT�
increases if compared to the infinite sample without heat
losses, i.e., their behavior is reversed, with respect to an in-
finite sample affected by heat losses. In consequence, at low
modulation frequencies, the thermal diffusivity obtained
from the slope of the phase is lower than the one obtained
from the slope of the amplitude. Moreover, the “inversion”
of the amplitude and phase slopes is also accompanied with
a loss of linearity of both the phase and ln��rT� as a function
of r. The frequency at which this inversion takes place in-
creases as the thermal diffusivity becomes higher and the
dimensions decrease. If the modulation frequency is in-
creased in the calculations, all slopes approach to each other,
as the effects of both, sample dimensions and heat losses
become less significant.

Figure 8 shows the measured thermal diffusivity of a
16 mm�7 mm�100 �m nickel foil, obtained from the
slopes of the amplitude, of the phase and from the product of
both. At frequencies higher than 100 Hz diffraction effects
are present. At intermediate frequencies the correct thermal
diffusivity �22 mm2 /s� is obtained. However, at frequencies
below 3 Hz �corresponding to a thermal diffusion length of
�1.5 mm�, the behavior of the slopes of the amplitude and
phase is reversed and higher diffusivities are obtained from
the slopes of the amplitudes. Moreover, the diffusivity ob-
tained from the product of both slopes increases as the
modulation frequency decreases. This result is explained by
the combination of the two last effects: the long distance
approximation is not longer valid and the side effects are not
negligible.

E. Anisotropic thin plates

According to the theoretical results obtained in Sec. II B,
the slope method can also be used to measure the thermal
diffusivity of anisotropic thin plates along the principal axes

contained in the surface. In this way, we have characterized
the thermal diffusivity tensor of two well known orthotropic
materials: a 100 �m thick slab of pyrolytic graphite �PG�, a
30 �m thick slab of pyrolytic boron nitride �PBN�, and of a
175 �m thick carbon fiber reinforced polymer composite.
As an example, in Fig. 9 we show the surface phase thermo-
gram corresponding to the PEEK composite sample, at a
modulation frequency of 13 Hz, where elliptical isophases,
characteristic of anisotropic materials can be clearly ob-
served. Due to the very high thermal anisotropy ratio of these
samples, different modulation frequencies must be used to
measure the two principal thermal diffusivities accurately.
For the fiber reinforced composite, the lower �higher� ther-
mal diffusivity was measured at modulation frequencies be-
low �above� 1 Hz. The corresponding thermal diffusivity val-
ues obtained along the two principal directions were 5.5 and
0.55 mm2 /s, which are in good agreement with the values of
the diffusivity obtained for this sample using the mirage
technique.19 Similarly, for PG and PBN, frequencies ranging
from 5 to 100 Hz are better suited for the highest thermal
diffusivity measurements �203 mm2 /s for PG and
65 mm2 /s for PBN�. Actually using lower frequencies leads
to boundary effects. On the contrary, for the lowest thermal
diffusivity �1.6 mm2 /s for PG and 1.2 mm2 /s for PBN� fre-
quencies below 3 Hz are used to avoid diffraction effects.

F. Final remarks

Limiting the temperature rise of the sample surface dur-
ing the experiments guarantees that nonlinear effects associ-
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FIG. 8. Experimental values of the thermal diffusivity of a 16 mm
�7 mm�100 �m nickel foil as a function of the modulation frequency
obtained from the slopes of the ln��rT� �open squares�, from the slope of the
phase �open circles� and from the product �solid symbols�, along the shortest
sample dimension.

FIG. 9. Experimental surface phase thermogram for the carbon fiber rein-
forced PEEK slab, 175 �m thick, at a modulation frequency of 13 Hz.
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ated to the dependence of the thermal properties on tempera-
ture are negligible. In our setup, we limit the maximum
temperature rise above the ambient �that is produced at the
heating laser spot� to a value of about 2 K. This means that
the laser power is varied according to the properties of the
sample �thermal diffusivity, shape, thickness, and diameter�
and to the modulation frequency used. Laser power values
between a few milliwatts for thin polymers and 350 mW for
the thicker metals have been used.

In Table II we summarize the thermal diffusivity values
obtained with our lock-in thermography setup under the best
experimental conditions: vacuum chamber, 200 nm graphite
layer covering the foils, minimum laser power, big enough
samples to avoid boundary effects, etc. As can be seen, the
agreement with literature values is very good for both good
and poor thermal conductors. The only discrepancy appears
for the PEEK filaments, for which a thermal diffusivity 2.5
higher than the nominal one has been obtained. It is worth
noting that the value is independent of the diameter, indicat-
ing it is not related to heat losses. It has been demonstrated
that crystalline polymers increase their thermal diffusivity
after drawing process.20,21 As our PEEK filaments, whose
degree of crystallinity has been measured to be 45%, are
obtained by extrusion, we attribute the high value of the
measured diffusivity to the structural changes induced during
the fabrication process of the filaments.

It is worth mentioning the result obtained for the human
hair. Although no reliable thermal diffusivity is available in
the literature, the very low value we have obtained is consis-
tent with the combination of the low thermal diffusivity of
the keratin �the material the hair is made of� and the compli-
cated internal structure of hair, with many layers introducing

thermal resistances, which reduce the thermal diffusivity.22

Finally, we would like to mention that, for all slabs listed
in Table II, we have also performed thermal diffusivity mea-
surements by focusing the laser beam with a cylindrical lens
on the sample surface, in such a way that an almost uniform
line beam was illuminating the whole sample width, leading
to a 1D heat propagation. The values of the diffusivity we
obtained were very similar to the ones obtained in the case of
2D propagation.

The conclusions of this paper are also valid for every
technique measuring the surface temperature. For instance, a
thermocouple attached at the rear surface has been used to
measure the thermal diffusivity.18,23,24 However, noncontact
techniques such as infrared thermography are preferable
when dealing with thin samples.

IV. SUMMARY AND CONCLUSIONS

We have analyzed the effects of the experimental condi-
tions on the thermal diffusivity measurements of thin slabs
and filaments using the slope method in lock-in thermogra-
phy experiments. As a result, we have demonstrated that con-
vective heat losses are not properly described by the linear
heat loss term introduced in the model, which has been ex-
tended to the case of 2D propagation. We have shown that,
when using the slope method, the effect of convective heat
losses is to increase the apparent diffusivity of the samples,
thus elucidating the origin of literature overestimation of the
diffusivity of bad thermal conductors. We have concluded
that reliable values of the thermal diffusivity of isotropic and
anisotropic thin slabs and filaments of any thermal properties
can be found provided several experimental conditions, im-
posed by the theoretical model, are fulfilled: �a� the sample is
kept in vacuum to suppress convective heat losses, especially
low diffusivity materials, �b� the thickness of the black layer
deposited to increase the infrared emission must be negli-
gible with respect to the sample thickness, �c� only experi-
mental data far away from the heating spot, where amplitude
and phase behave linearly, are used, �d� small laser powers,
producing small temperature rise, are used to prevent nonlin-
ear heating effects, �e� high modulation frequencies �f
�10 Hz� are avoided, especially for poor conductor materi-
als, to avoid diffraction effects, and �f� low frequencies
�0.1–1 Hz� are preferred provided the slabs are large enough
to avoid boundary effects. Lock-in thermography measure-
ments performed on a wide set of thin slabs and filaments of
different thicknesses and thermal properties in the suitable
experimental conditions, confirm the validity of the slope
method to perform accurate evaluation of the thermal diffu-
sivity from lock-in thermography data.

ACKNOWLEDGMENTS

This work has been supported by the Ministerio de Edu-
cación y Ciencia �Grant No. MAT2008-01454� and by the
Universidad del País Vasco �Grant No. DIPE08/10�.

1 L. Fabbri and P. Fenici, Rev. Sci. Instrum. 66, 3593 �1995�.
2 B. Zhang and R. E. Imhof, Appl. Phys. A: Mater. Sci. Process. 62, 323
�1996�.

3 J. F. Bisson and D. Fournier, J. Appl. Phys. 83, 1036 �1998�.

TABLE II. Thermal diffusivity �mm2 /s� of several thin slabs and filaments.
Measurements performed in vacuum. Slabs have been covered by a 200 nm
thick graphite layer. The error is 5%.

Material Shape This work Literaturea

Cu Foil �=100 �m 122 116
Ni Foil �=100 �m 22 22
Ni Foil �=10 �m 21 22
AISI-302 Foil �=100 �m 3.8 3.7–4.0
PEEK Film �=250 �m 0.19 0.19
PEEK Film �=125 �m 0.19 0.19
PEEK Film �=75 �m 0.19 0.19
PEEK Film �=25 �m 0.19 0.19
Pyrolytic graphite Film �=100 �m 203 215

1.6 1.5
Pyrolytic boron Film �=30 �m 65 –
Nitride 1.2 –
PEEK composite Film �=175 �m 5.5 6

0.55 0.4
Ni Wire 2b=125 �m 19 22
Ti Wire 2b=125 �m 8.8 9.0
AISI-302 Wire 2b=125 �m 3.75 3.7–4.0

Wire 2b=25 �m 3.5 3.7–4.0
PEEK Filament 2b=150 �m 0.50 0.19
PEEK Filament 2b=34 �m 0.50 0.19
Human hair Filament 2b=60 �m 0.14 –

aReferences 15, 17, 18, 25, and 26.

074904-8 Mendioroz et al. Rev. Sci. Instrum. 80, 074904 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp

http://dx.doi.org/10.1063/1.1146443
http://dx.doi.org/10.1007/BF01594230
http://dx.doi.org/10.1063/1.366794


4 J. F. Bisson and D. Fournier, J. Appl. Phys. 84, 38 �1998�.
5 H. G. Walther and T. Kitzing, J. Appl. Phys. 84, 1163 �1998�.
6 S. Paoloni and D. Fournier, J. Appl. Phys. 92, 5950 �2002�.
7 S. Paoloni and D. Fournier, J. Appl. Phys. 92, 5955 �2002�.
8 A. Wolf, P. Pohl, and R. Brendel, J. Appl. Phys. 96, 6306 �2004�.
9 A. Muscio, P. G. Bison, S. Marinetti, and E. Grinzato, Int. J. Therm. Sci.
43, 453 �2004�.

10 C. Pradère, J. M. Goyhénèche, J. C. Batsale, S. Dilhaire, and R. Pailler,
Int. J. Therm. Sci. 45, 443 �2006�.

11 M. Oksanen, R. Scholz, and L. Fabbri, J. Mater. Sci. Lett. 16, 1092 �1997�.
12 J. Hou, X. Wang, and J. Guo, J. Phys. D 39, 3362 �2006�.
13 W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, Appl. Opt.

20, 1333 �1981�.
14 Handbook of Mathematical Functions, edited by M. Abramowitz and I. A.

Stegun �Dover, New York, 1965�, p. 378.
15 A. Salazar, A. Sánchez-Lavega, A. Ocáriz, J. Guitonny, G. C. Pandey, D.

Fournier, and A. C. Boccara, J. Appl. Phys. 79, 3984 �1996�.
16 O. Breitenstein and M. Langenkamp, Lock-in thermography �Springer,

Berlin, 2003�, p. 32.
17 See: Technical data: material properties of PEEK, Goodfellow Corpora-

tion, URL: http://www.goodfellow.com.
18 H. Kato, T. Baba, and M. Okaji, Meas. Sci. Technol. 12, 2074 �2001�.
19 A. Salazar and A. Sánchez-Lavega, Int. J. Thermophys. 19, 625 �1998�.
20 C. L. Choy, G. W. Yang, and Y. W. Wong, J. Polym. Sci., Part B: Polym.

Phys. 35, 1621 �1997�.
21 C. L. Choy, Y. W. Wong, G. W. Yang, and T. Kanamoto, J. Polym. Sci.,

Part B: Polym. Phys. 37, 3359 �1999�.
22 S. Nagase, M. Oshika, S. Ueda, N. Satoh, and K. Tsujii, Bull. Chem. Soc.

Jpn. 73, 2161 �2000�.
23 I. Hatta, Y. Sasuga, R. Kato, and A. Maesono, Rev. Sci. Instrum. 56, 1643

�1985�.
24 Y. Gu and I. Hatta, Jpn. J. Appl. Phys., Part 1 30, 1295 �1991�.
25 L. R. Touloukian, R. W. Powell, C. Y. Ho, and M. C. Nicolasu, Thermal

Diffusivity �IFI/Plenum, New York, Washington, 1973�.
26 A. Salazar, A. Sánchez-Lavega, A. Ocáriz, J. Guitonny, J. C. Pandey, D.

Fournier, and A. C. Boccara, Appl. Phys. Lett. 67, 626 �1995�.

074904-9 Mendioroz et al. Rev. Sci. Instrum. 80, 074904 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp

http://dx.doi.org/10.1063/1.367999
http://dx.doi.org/10.1063/1.368180
http://dx.doi.org/10.1063/1.1511295
http://dx.doi.org/10.1063/1.1511296
http://dx.doi.org/10.1063/1.1811390
http://dx.doi.org/10.1016/j.ijthermalsci.2003.10.005
http://dx.doi.org/10.1016/j.ijthermalsci.2005.05.010
http://dx.doi.org/10.1023/A:1018503530713
http://dx.doi.org/10.1088/0022-3727/39/15/021
http://dx.doi.org/10.1364/AO.20.001333
http://dx.doi.org/10.1063/1.361827
http://www.goodfellow.com
http://dx.doi.org/10.1088/0957-0233/12/12/307
http://dx.doi.org/10.1023/A:1022598302382
http://dx.doi.org/10.1002/(SICI)1099-0488(19970730)35:10<1621::AID-POLB14>3.0.CO;2-C
http://dx.doi.org/10.1002/(SICI)1099-0488(19970730)35:10<1621::AID-POLB14>3.0.CO;2-C
http://dx.doi.org/10.1002/(SICI)1099-0488(19991201)37:23<3359::AID-POLB11>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1099-0488(19991201)37:23<3359::AID-POLB11>3.0.CO;2-S
http://dx.doi.org/10.1246/bcsj.73.2161
http://dx.doi.org/10.1246/bcsj.73.2161
http://dx.doi.org/10.1063/1.1138117
http://dx.doi.org/10.1143/JJAP.30.1295
http://dx.doi.org/10.1063/1.115410



