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ABSTRACT

Cylindrical Thermal Contact Conductance. (August 2003)

George Harold Ayers, B.S., Arizona State University;

M.S., Arizona State University

Chair of Advisory Committee: Dr. L. S. Fletcher

Thermal contact conductance is highly important in a wide variety of applications,

from the cooling of electronic chips to the thermal management of spacecraft.  The demand

for increased efficiency means that components need to withstand higher temperatures and

heat transfer rates.  Many situations call for contact heat transfer through nominally

cylindrical interfaces, yet relatively few studies of contact conductance through cylindrical

interfaces have been undertaken.  This study presents a review of the experimental and

theoretical investigations of the heat transfer characteristics of composite cylinders,

presenting data available in open literature in comparison with relevant correlations.

The present investigation presents a study of the thermal contact conductance of

cylindrical interfaces.  The experimental investigation of sixteen different material

combinations offers an opportunity to develop predictive correlations of the contact

conductance, in conjunction with an analysis of the interface pressure as a function of the

thermal state of the individual cylindrical shells.  Experimental results of the present study

are compared with previously published conductance data and conductance models.
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CHAPTER I

INTRODUCTION

The conduction of heat through homogeneous, isotropic materials has been well

understood since the time of Fourier (1822).  The conduction of heat across interfaces

formed by contacting surfaces is less understood, especially since this phenomenon has

received little attention until the investigations of Holm (1929) and Roess (1948).  In many

circumstances the rate of heat transfer through contacting components must be known and

controlled to facilitate reliability and to prolong component life.  

Thermal contact conductance is highly important in such applications as heat

rejection from electronic components, cooling gas turbine blades, enhancement of heat

transfer through duplex and shrink-fit finned tubes, and thermal management of space-

borne systems.  In many cases, the demand for increased efficiency means that

components need to withstand higher temperatures and heat transfer rates.  Gas turbines

operate more efficiently at higher gas temperatures, so effective control of blade

temperatures without the costs incurred by actively cooling the blades is very important.

Nuclear power generators operate more efficiently at higher heat rates, so enhancing the

rate of heat transfer across the junction of the fuel and sheathing allows these higher heat

rates to be sustained without the risk of melting or cracking the fuel.  Integrated circuits,

which are becoming more and more densely packed, have higher power requirements and

rely on contact conduction to transfer waste heat from internal components to external

surfaces where it can be dissipated.  While spacecraft rely upon radiation heat transfer to

reject excess heat, conduction heat transfer is the primary means of moving heat to the

This thesis follows the style and format of the Transactions of the ASME: Journal of Heat
Transfer.
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thermal radiation systems to maintain appropriate temperature levels for component and

personnel modules. Modern artillery and cannon barrels, made of shrink-fit composite

cylinders, must withstand the transient pressures and high temperatures of firing and

conduct waste heat through the cylindrical shells to the ambient air quickly enough to

maintain strength and component life (Throop, et al. (1982), Underwood, et al. (1988),

Endersby, et al. (1996)).

THERMAL CONTACT CONDUCTANCE

Surfaces that appear to be smooth are actually composed of microscopic asperities

and depressions that deviate from an apparently smooth surface (Figure 1.1).  Generally,

the microscopic deviations are termed roughness and the macroscopic deviations are

termed waviness.  When two surfaces are in contact with each other, the actual area of

contact is much smaller than the apparent area of contact.  These areas of actual contact

occur where the asperities of one surface are in contact with the asperities of the other

surface.  The number of these contact spots is further reduced when surface waviness and

errors in form are taken onto account.  Typically, there is some material or fluid in the

interstitial spaces between the contacting surfaces, and heat is transferred through this

interstitial material.  If there are no interstitial materials or fluids, then most of the heat

HEAT FLOW

Figure 1.1  – Constriction of heat flow through an interface formed by two
materials.
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transferred across the interface formed by the two surfaces is transferred through these

small contact spots.  The amount of actual contact area is also dependent on the physical

properties of the contacting materials.  If one of the materials is softer than the other, then

the asperities of the harder material are likely to penetrate the surface of the softer material

and increase the contact area.  At higher pressures, one would expect that the penetration of

these asperities would increase.  In the case of materials of nearly the same hardness, the

asperities would deform, and one might expect that the amount of deformation would

increase with pressure.  Interfaces with a higher mean thermal conductivity would be

expected to have a lower resistance to heat transfer than those interfaces that have lower

mean thermal conductivities. 

This limited contact area constricts the flow of heat to a few channels at the

interface between the materials, making the temperature distribution in the vicinity of the

interface complex and three-dimensional.  An approximation to this complex temperature

T1

T2

∆Ti

qx
"

POSITI ON

Figure 1.2 – Effect of constriction resistance on one-dimensional temperature
distribution for flat interfaces.
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distribution is to assume a temperature discontinuity at the interface, with the associated

temperature drop determined by the temperature distribution on either side of the interface

(Figure 1.2).  This temperature discontinuity is proportional to the heat flux through the

interface, with the proportionality constant called the thermal contact conductance, hc,

defined in terms of the temperature drop across the interface and the heat flux through the

interface.  The phenomenon is further complicated when the surfaces that form the

interface are not conforming, flat, or smooth.

Heat is transferred across interfaces formed by contacting surfaces through some

combination of three paths (Figure 1.3): conduction through contacting spots, conduction

across the interstitial space through interstitial material (if any), and radiation across the

interstitial spaces (provided that the interstitial material is not opaque to thermal radiation).

Convection within the interstitial fluid is not generally taken into account, as the thickness

of the interstitial space is on the order of roughness and does not lend itself to bulk fluid

motion.  Thus, we express the heat transfer rate through the joint as the sum of the heat

transferred through the contact spots and the heat transferred through the interstitial gap:

€ 

qj = qc + qgap + qrad (1.1)

a

b
c

A

B
C

Figure 1.3 – Heat transfer paths at an interface: A) conduction through interstitial
material, B) conduction at contact spot, C) radiation across interstitial space.
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The radiative heat flux across the interface may be neglected if the interstitial material is

opaque to infrared radiation or if the interface temperature level is less than 300 ˚C

(Madhusudana, 1996).  This is justified since even moderate temperature differences at that

temperature level yield radiative heat rates that are much smaller than the total heat transfer

through the joint.  

Neglecting the contribution of thermal radiation, the heat transfer rates in Equation

1.1 can be linked to the temperature difference between the two surfaces by means of

proportionality constants, or conductances:

€ 

hj ≡
qj

Aapp∆Tj

,  hc ≡
qc

Aapp∆Tj

,  hgap ≡
qgap

Aapp ∆Tj

(1.2)

Thus, the total heat transfer across the junction (Equation (1.1)) can be expressed as:

€ 

Q j = hj Aapp∆Tj = hc + hgap( ) Aapp∆Tj (1.3)

These conductances are often nondimensionalized with the harmonic mean roughness, the

effective conductivity of the joint, and the average slope of the asperities of the rougher

surface.

An appropriate predictive model of the thermal contact conductance should take

into account the geometry of the interface.  Thus, in addition to the thermophysical

properties of the materials that define the interface, geometric parameters must be

considered.  These include microscopic scale parameters like roughness, waviness, and

asperity shape (in the form of the asperity slope), and macroscopic parameters such as the

radius of curvature at the macroscopic contact spots. 

Additionally, the model should take into account the effects of the mechanical and

thermal state at the interface (Fletcher, 1971).  The conductance should approach an infinite

vale as pressure increases to infinity and approach a zero value as the pressure decreases to
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zero.  The conductance should increase as the mean junction temperature rises, and as heat

transfer rate increases. 

CYLINDRICAL JOINTS

While studies dealing with thermal contact conductance between flat surfaces are

common, studies dealing with cylindrical contacts are limited, and those deal primarily with

specific applications.  Cylindrical contacts occur in such diverse applications as composite

cylindrical tanks, space structures, power transmission lines, electronic devices, nuclear fuel

elements, air conditioning systems, and pipelines.  As a consequence, conduction through

cylindrical contacts is an important phenomenon to understand.  While there are more

studies devoted to thermal conduction through cylindrical contacts than there were a decade

ago, this phenomenon is still rather under represented in the literature when one considers

that cylindrical contacts are relatively common.  In reviews of contact conductance literature

(Fletcher (1988) and Madhusudana and Fletcher (1985)), approximately 5% of the contact

conductance articles deal with cylindrical contacts.

Figure 1.4 illustrates the four different composite cylinder combinations of thick

and thin shell geometries that can form a cylindrical interface.  From a strength of materials

point of view, a thin shell is defined as one whose thickness is less than one tenth the

nominal radius (Shigley, 1972).  Thin cylindrical shells are commonly found in such

places as the cladding of superconducting wires, tension-wound finned tubes, and large

diameter pipes.  Thick cylindrical shells (including solid composite cylinders) may occur in

such applications as nuclear fuel rods and composite pipes.

Cylindrical joints behave differently than flat joints.  For heat transfer through flat

contacts, pressure (although dependent on interface heat flux, interface temperature level,

heat flow direction, interstitial fluid, surface condition, and the thermophysical properties of

the materials that compose the joint) can be monitored and controlled independently of the
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heat flux through the interface, and results are often presented in terms of conductance as a

function of interface pressure.  For cylindrical contacts (in addition to the aforementioned

factors that influence interface pressure for flat surfaces) the interface pressure is also

dependent on the initial degree of fit, the differential expansion of the cylinders due to the

temperature difference at the interface, and the temperature distribution within the individual

cylindrical shells. 

The interface pressure, temperature distribution throughout the cylindrical shells,

and the thermal contact conductance are interdependent – they all depend on the interface

heat flux.  Therefore, the heat flux is far more influential for cylindrical contacts than it is

for flat contacts.  Of the possible experimental test parameters, only the heat flux through

the joint may be independently controlled.  As a consequence, the experimental thermal

contact conductance results for cylindrical contacts are often presented as a function of

A B

C D

Figure 1.4 – Four different types of composite cylinders with inner-outer shell
thickness combinations of: A) thick-thick, B) thin-thin, C) thick-thin, and D) thin-
thick.
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interface heat flux, a function of calculated interface pressure, or a function of the

temperature difference across one of the cylindrical shells.

In addition to surface irregularities such as waviness and roughness, conduction

through cylindrical contacts involves other parameters such as out-of-roundness.

Furthermore, placement of instrumentation for studies involving cylindrical contacts is

more difficult than it is for flat contacts.  It is probable that these additional complexities

discourage investigations into thermal contact conductance of cylindrical contacts. 

Additional parameters need to be considered in modeling as well.  Since the

pressure at the interface is not independent of the temperature distribution within the

cylindrical shells, initial clearance/interference must be taken into account.  Rather than

depending on an assumption of isotropic roughness and waviness, the axial and

circumferential roughness and waviness should be measured and geometrically averaged.

Large-scale errors in form (cylindricity and roundness) should be accounted for when

calculating the influence of the macroscopic contact spots.

Nevertheless, conduction through cylindrical contacts is increasingly important, and

additional studies are warranted.  The present study provides an overall review of the

analytical and experimental studies of the thermal contact conductance of composite

cylinders and associated configurations, and provides a comparison of existing

experimental data and correlations, insofar as possible.  Tabulations of previously

published correlations, and figures demonstrating the range of available data in these

categories are also presented.

OBJECTIVE

The objectives of this investigation include

• a review of current literature and models for cylindrical contact conductance,
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• the development of empirical correlations of the cylindrical contact conductance

as functions of interface heat flux and interface pressure,

• an experimental measurement of the thermal contact conductance between

several selected pairs of cylindrical shells,

• an analysis of the coupling between the stress and thermal states of the

cylindrical shells, in order to ascertain the pressure at the interface between the

contacting cylindrical shells, and

• a comparison of the empirical correlations obtained in the present study with

previously published and present experimental data.  
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CHAPTER II

LITERATURE REVIEW

Before making predictions of the thermal contact conductance at interfaces, it is

necessary to have an adequate understanding of the mechanical and thermal phenomena

affecting the thermal contact conductance.  This chapter reviews some of the investigations

of the thermal contact conductance of cylindrical interfaces, examining both theoretical

models that illuminate the relevant phenomena, and experimental studies that provide

results for comparison.  Cylindrical contact studies are divided into two groups.  Some

studies are more theoretical in nature, dealing primarily with fundamental issues, and are

broadly classified as General Cylindrical Studies.  Others are experimentally based, and are

classified as Applied Cylindrical Studies.  A brief review of General Contact Conductance

Studies (chiefly papers that deal with contact conductance theory for rough surfaces)

follows.  Papers in this section define parameters of interest and provide a basis of

comparison of experimental results and theories.  Correlations of interest are presented in

tabular form for each section, and experimental data are compared to each other.

Thermal rectification, a phenomenon associated with contact conductance between

dissimilar materials such as the different metals used in this study, has been studied by

many investigators, with relatively few publications concerning predictive models.  Further,

this present study does not lend itself to the recognition of thermal rectification, since it is

highly unlikely that identical mechanical and thermal conditions at the interface would exist

for different material combinations.  Therefore, thermal rectification will not be considered

as it is outside the scope of this study.

Madhusudana, et al. (1990) reviewed studies of theoretical and experimental

investigations of heat transfer in compound cylinders, categorizing these studies as
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application oriented (and appropriate to specific materials and tubing) or fundamental

(utilizing idealized surfaces and geometries).  They found that there are significant holes in

the state of knowledge of heat transfer through cylindrical contacts, and that only a modest

effort has been made to fill these gaps.  They conclude that there are several important

shortcomings in the literature: contact resistance is measured indirectly from total

resistance and computed material resistances; contact resistance is assumed to be constant

(neglecting the effects of differential expansion); fundamental studies consider idealized

surfaces that bear little resemblance to engineering surfaces; and that application oriented

studies generally refer to specific conditions and materials.  Furthermore, they recognize

that there is a dearth of data that can be used to confirm theoretical models.

Hrnjak and Sheffield (1990) produced a similar review of plate-fin heat exchanger

studies.  The investigations reviewed were concerned with the junctions formed between the

tubes and the fins.  They identify thermal contact conductance between the fin and the tube

as a neglected phenomenon, as far as most heat exchanger studies are concerned.  They

concluded that only a limited amount of experimental data is generally available, and that

many parameters important to current contact conductance theories are not reported. 

GENERAL CYLINDRICAL STUDIES

General studies of thermal contact conductance through cylindrical contacts consist

of investigations dealing with composite cylinders and cylindrical shells.  For the most part,

the heat flow through composite cylinders is assumed to be axisymmetric and radial.

While some of these studies are for specific materials and applications, it is fairly easy to

extend their results to more general cases. 

Brutto, et al. (1959) conducted a study of compound tubes in a vacuum

environment.  Their study was motivated by the problem of extracting heat from clad

cylindrical nuclear fuel elements at interface heat fluxes between 3.0E5 and 9.0E5 W/m2.
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The experimental thermal contact conductance results are presented as a function of the

temperature of the water surrounding the fuel elements, and cannot be compared to other

published results of theories.  They found that the cladding process (i.e. how the cladding

is bonded to the fuel) had a significant effect on the thermal behavior of the interface, due

to the existence of metallurgical bonding, plastic deformation of tube layers, and contact

pressure due to residual elastic strain.  The authors suggest surface roughness at the

interface as a contributing factor to the contact resistance.  They also recommend that the

method of joining the cladding to the fuel be taken into account when making studies in

this field, suggesting further that a metallic bond between the fuel and the cladding material

is superior to a mechanical bond.

Cohen, et al. (1960) studied the conductance between cylindrical uranium-dioxide

pellets and thin stainless steel cladding.  They performed in-pile experiments, measuring

the centerline temperature of the fuel pellet from 100 °C to nearly 1200 °C.  They obtained

experimental thermal contact conductance data as a function of contact pressure, which was

calculated from the relative thermal expansion of the pellet and the cladding.  They

identified operating factors that influence the interface pressure (including fuel cracking,

initial clearance, and assembly method).  Among the interesting phenomenon observed was

the variation of thermal contact conductance with the each startup and as a function of time

during the operating cycle.  The lack of surface metrology and the poor repeatability make

the presented data of limited use for the purposes of the current study.

Williams and Madhusudana (1970) identified some basic problems associated with

studies of conductance in cylindrical contacts, and presented the experimental results of

two geometries – partial cylindrical contacts (included angle less than 20°) and full

cylindrical contacts.  The experimental thermal contact conductance data were obtained over

a range between 1.0E5 and 5.0E5 W/m2 with both air and vacuum as interstitial fluids.

Some of the problems they encountered include difficulty in obtaining truly cylindrical
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contacts, and facilitation of a uniform heat flux through the interface.  They reported that

partial cylindrical contacts behave very similarly to flat contacts, so much so that they may

be simplified as such for many cases.  Full cylindrical contacts were found to be very

susceptible to small out-of-roundness deviations in the interfacial area.  They recommend

interference fits to enhance the conduction through the joint – in fact they state in their

conclusions that the thermal resistance through such interfaces was too small to be

accurately determined in their study.  There is insufficient surface metrology and cylinder

geometry to determine the interface pressure or to use current contact conductance models.

Novikov, et al. (1972) conducted a study of the heat transfer between coaxial

cylindrical casings in vacuum, and determined that the contact pressure is strongly related

to the ratio of thermal expansion coefficients, the initial stress state of the composite tube,

and the thermal load.  One of their conclusions is that when the thermal expansion

coefficient of the outer casing is greater than that of the inner cylinder, the interface

pressure will decrease and that contact resistance will increase with increasing, radially

outward thermal load.  Their model takes into account the thermophysical and mechanical

properties of the cylindrical casings, but neglects surface conditions and imperfections.

The experimental data used for their model development is not available for comparison.

Tam (1976) and Hsu and Tam (1979) conducted experiments with composite

cylinders in air, varying the heat flux and surface roughness of one side of the interface.

They identified phenomena that might explain the difference in the thermal contact

conductance behavior of materials in cylindrical contacts and flat contacts.  Predictions of

contact conductance calculated by modified flat contact models (derived from Ross and

Stoute (1962), and Shlykov and Ganin (1964)) are much lower than the experimental data

of Hsu and Tam (1979).  They propose as a possible explanation the lateral expansion of

flat contacts, which would reduce the thermally induced strain at the interface and increase

the associated micro-contact area.  The slopes of the asperities may also be affected by the
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lateral expansion, which would, in turn affect the actual contact area and thus the contact

conductance.  They also identify the effects of surface waviness, interfacial heat flux,

oxidation, and radius of curvature as important parameters that should be accounted for in

future correlations.

Madhusudana and Fletcher (1981) present results of thermal contact conductance

tests for cylindrical interface heat fluxes between 8.0E3 W/m2 and 4.2E4 W/m2.  They

report that joints with an interference fit exhibit negligible thermal contact resistance (due to

the negligible temperature discontinuity at the interface).  They also report that the increase

of the joint conductance in air compared to the increase in vacuum was of the same order of

magnitude as the ratio of the thermal conductivity of air to the amount of initial clearance.

They further assert that the primary factors of importance for predicting the thermal contact

conductance are the initial fit, the differential expansion due to the temperature gradient

within the cylindrical shells, and the differential expansion due to the temperature

difference across the interface.  They suggest that, as a result of the coupling between the

contact resistance, interface pressure, and interface temperature difference, predictions of

the contact conductance must be solved iteratively.  They do not provide complete geometry

data (only the interface radius is given) thermal data (temperatures are not given), or surface

metrology.

Wang and Nowak (1982) conducted a theoretical analysis of the interface between

duplex tubes where there is a sector at the interface where the tubes are not in contact with

each other.  Both isothermal and isoflux boundary conditions at the interface were studied

through the use of an electrical analog tank and a computer model of a representative sector

of the duplex tube.  Results in the form of a predictive model for the contact resistance are

presented, but no thermal contact conductance data is given in their study.

Srinivasan and France (1985) analytically studied heat transfer in prestressed

duplex tubes.  Their study, prompted by the erratic performance in the steam generator of
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an experimental nuclear reactor, suggested that the multiple operating conditions were

explained by the time relaxation of the initial prestress.  Analytical models showed that

sufficiently low prestresses at the interface of the duplex tube would lead to non-unique

solutions.  One suggested consequence of low prestress is the propagation of a non-

contact region through the tube, leading to widespread separation of the layers of the tube.

An increase in the temperatures throughout the tube and an increase in the heat flux in the

contacting regions are also expected as a consequence of this separation.  However, the

results of the study cannot be compared with other published studies since the results are

presented in arbitrary units. 

Barber (1986a, 1986b) also studied the non-uniqueness of analytic solutions for

the temperature distribution in prestressed duplex tubes studies by Srinivasan and France

(1985).  Specifically, he examined the influence of the phenomenon on the axial

temperature variation in the duplex tubes, and the stability of the temperature distribution

solutions.  He found that there are always an odd number of solutions, alternating between

stable and unstable, and that the phenomenon is sensitive to a number of conditions,

including the initial stress state of the composite tube, the temperature level at the interface,

and the thermophysical properties of the tube materials.

Madhusudana (1983, 1986, 1999) presents a predictive model for the thermal

contact conductance through a cylindrical joint based on material properties, cylinder

geometry, surface finish, and initial degree of fit.  He illustrates the influence of thermal

load, material combination, and interstitial fluid on interface pressure and contact

conductance.  In general, the model predicts that contact pressure increases with heat load.

One interesting result of his model is that a material combination with a lower effective

conductivity (defined as the harmonic mean of the two material thermal conductivities) may

result in a higher contact conductance than a material combination of a higher effective

conductivity, depending on the direction of the heat flow.  He concludes (Madhusudana,
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1986) that there is a strong relation between the contact pressure and material combination,

and between conductance and the properties of the interstitial medium (especially at low

thermal loads).  He also states that there is a weak relation between the contact pressure and

the properties of the interstitial medium.  However, there are no comparisons with

experimental data.

Lemczyk and Yovanovich (1987) offer a method for predicting the conductance of

cylindrical contacts based on advanced models for conductance of flat contacts that

considers contact pressure, microhardness, and surface roughness.  The procedure is

iterative in nature, and results are presented in the form of thermal contact conductance as a

function of an estimated contact pressure.  Good agreement is found with the data of Hsu

and Tam (1976), although some surface properties (which were not provided) were

estimated.  Comparisons are made with modified flat contact models of Shlykov and Ganin

(1964), Veziroglu (1967), and Ross and Stoute (1962), demonstrating that the method is

more effective for predicting the contact conductance than the other three models.  This is

chiefly a result of the conforming surface model used, apparently from Yovanovich (1981).

They recommend that, in future models, the difference between axial and circumferential

roughness be taken into account.  Their method assumes a plane-stress condition within

the composite cylinder, and is developed for cases where there is an interference fit.

Neither of these conditions apply to the facility used in the present study.

Danes and Simon (1990) used a modification of the transient method used by

Bourouga and Bardon (1992) to determine the transient thermal contact resistance between

two cylinders.  They used several samples (constructed of an inner stainless steel cylinder

and an outer tin cylinder) and determined an exponential correlation dependent on

temperature.  They report a reduction in the measurement error of 50%.  However,

Bourouga and Bardon (1992) cite an experimental uncertainty that is of the same order of

magnitude as their measurement.  Insufficient surface metrology information is provided to
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use current conductance models and not enough geometric information is provided to

determine the variation of interface pressure with experimental conditions.

Madhusudana and Litvak (1990) conducted an experimental study of conduction

through a composite cylinder, focusing on the design, construction, and validation of an

experimental test facility.  The test facility consisted of a composite cylindrical shell

(stainless steel 303 and aluminum 2011) which was heated on the interior by hot fluid and

cooled on the exterior by cool fluid.  They present the thermal contact conductance as a

function of temperature difference across the interior cylinder, although they also give heat

rates (and through calculation, interfacial heat fluxes).  There is no mention of the clearance

between the cylindrical shells or the surface characteristics (roughness and waviness).

They call attention to the effect of the interstitial fluid and emphasize that the interface

pressure can only be estimated, and should not be used to present data.  They recommend

that theoretical models be refined to take into account large scale irregularities (such as out-

of-roundness and waviness) at the interface.

Artyukhin, et al. (1991) constructed a computational algorithm to determine the

thermal contact resistance between nuclear fuel pellets and cladding by solving the inverse

heat transfer problem, with the aim of using the model for non-steady experimental studies

inside reactors.  Their results suggest the optimal placement of temperature sensors within

the fuel element and the means that may be used to analyze and process the data from non-

steady thermal experiments. 

Table 2.1 compares correlations that are more fundamental in nature, and have

general applicability.  These correlations borrow heavily from flat contact models, and have

(for the most part) the familiar hardness, and roughness terms.  Newer models for heat

transfer through flat contacts may be modified to better account for out-of-roundness and

longitudinal waviness.
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Table 2.1 – General Cylindrical Conductance Correlations

Correlation Comments/Conditions
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CYLINDRICAL CONTACT APPLICATION STUDIES

A majority of the application studies deal with heat exchangers, including the

installation of fins or extended surfaces.  Thermal contact resistance accounts for a

significant portion of the thermal resistance in plate finned heat exchangers.  Typical

finned-tube configurations are shown in Figure 2.1.  From a geometric viewpoint, tension

wound, footed fins have a dual nature.  At the foot, they might be expected to behave as thin

cylindrical shells.  At the point where the fin rises from the foot, they might be expected to

behave as thick cylindrical shells.  Therefore, analysis of the heat transfer through the fin-

tube interface requires careful consideration of the geometry.

The effects of the thermal resistance of the fin-tube bond are of considerable

interest.  Kim (1978) identified a major deficiency in the state of the art – specifically the

lack of theoretical or empirical prediction techniques for the thermal contact resistance of

all types of finned tubes.  The memo describes the objectives of a proposed study: to

A B

C D

Figure 2.1 – Typical heat exchanger fin types: A) edge-wound ‘I’ fins, B) edge-
wound ‘foot’ fins, C) extruded ‘muff’ fins, and D) plate fins.
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investigate the effects of material properties, fin-tube geometry, and surface coating with the

result of a correlation of joint conductance as a function of fin-tube geometry and

mechanical properties. 

Dart (1959) described a method of measuring the effect of fin bond on the heat

transfer through the fin-tube contact and conducted a series of experimental tests to

demonstrate the utility of the method.  The method described in this seminal work was

refined by Eckels (1974, 1977) and later by Abuebid (1984), and others.  The method,

which uses geometric parameters to predict the heat transfer through the bond, does not

consider the effect of thermophysical properties. 

Gardner and Carnavos (1960) presented a model for the thermal contact resistance

of the bond between various types of fins on tubing, based on finned-tube geometry,

material properties, and fluid temperatures.  They observed that the interface pressure (due

to elastic stresses in the tube and the fins) can be calculated with the method of

Timoshenko and Goodier (1951).  Experimental data include information from tests on

tension wound fins and “muff-type” fins, but lack surface metrology and sufficient

information regarding the interface geometry for broader application.  They also proposed

correlations to predict the gap resistance (“bond resistance”) as a function of operating

conditions, material properties and fabrication processes.  They conclude that the “bond-

resistance” of interference fit finned-tubes is negligible for air-cooled heat transfer

equipment, but may be significant at extreme temperature level conditions.  They also

observe that the concentricity of the tube wall and the muff-fin base has little effect on the

contact resistance – provided that the gap resistance is less than one fifth the overall

resistance, and that the error introduced is less than three percent.  They also observe that

longitudinal variation of the interfacial diameters has a more dramatic effect on the thermal

contact resistance.
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Young and Briggs (1965) and Kulkarni and Young (1966) recognized that contact

resistance can be a significant part of the overall thermal resistance in finned-tube heat

exchangers.  They produced design charts predicting the contact resistance as a function of

air and fluid temperature operating conditions and classified them according to fin number

and diameter.  These charts assume an initial contact pressure and fabrication temperature,

and were constructed from data for aluminum muff-type fins on steel tubes.  Bond

resistance (including contact resistance) is presented as a function of the temperature of the

inside tube, which may not be uniform through the thickness or along the axis of the tube.

Further, for different types of tubing or fin material, these charts may not be accurate, and

they do not apply to different types of fin geometries such as tension wound fins.  Further,

no surface metrology information is given, and the data lack sufficient geometric

information to calculate the variation of interface pressure with the temperature distribution.

Insufficient information is present to fit the data into current predictive contact conductance

models.

Smith, et al. (1966) utilized a single tube test rig to characterize the performance of

steel and aluminum tubes with aluminum tension-wound and footed fins.  Both steady and

cyclic operation tests at tube temperatures between 330 °C and 375 °C.  They found that

there was an increase in thermal resistance with tube wall temperature, and that thin fins

deform with temperature (changing the pressure distribution of the interface). 

Eckels (1974, 1977) designed a test facility that used a large number of tube-fin

interfaces in a tube coil to determine the average contact conductance between tubes and

plate fins.  The uncertainty of the thermal contact conductance values given by this

technique was estimated to be on the order of 20%.  Sheffield, et al. (1985b), Sheffield, et

al. (1987), Sheffield, et al. (1989), and Sauer and Sheffield (1987) used this technique in

the studies reviewed here.  In a second study, Eckels (1977) utilized the previously

designed test facility to obtain experimental values of the thermal contact conductance
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through a dry, mechanically expanded plate-finned tube, and produced a correlation that is

dependent on geometry alone.  He found that the values of temperature, mass flow rate, and

the fin resistance were the most significant sources of error in his relation, and that the

error in the results increases with heat flux (approximately 15% at 5.676E3 W/m2K, and

30% at 1.13E4 W/m2K).

Kuntysh, et al. (1983) studied the thermal contact resistance of L-footed fins.  They

used two different tube boundary conditions in their investigation – constant tube wall

temperature, and a varying tube temperature.  They provide two power law correlations of

contact resistance as a function of interface heat flux.  Their correlation does not take into

account the common thermophysical properties and surface characteristics that are

considered in more recent thermal contact conductance theories, nor are these parameters

presented in their study.  Without these parameters, their data (thermal contact resistance as

a function of heat flux) is difficult to use in any subsequent modeling without assuming

too much information.  Further, their correlation does not explicitly have any dependence

on the boundary conditions in tests used to generate the empirical data. 

Stafford (1983) and Sheffield, et al. (1989) used scanning electron microscopy to

study the effects of expansion and other geometric parameters (such as waviness) on the

characteristics of tube-fin interface surfaces.  They determined that tube surface roughness

decreases with decreasing fin number (fins per unit length), and increases with increasing

tube expansion. 

Christensen and Fernandes (1983) studied the contact and fouling resistances in

pneumatically expanded finned tube heat exchangers, constructed of copper fins on copper,

copper-nickel, or stainless steel tubes.  They presented order of magnitude results that

suggest that the contact resistance is greater than the fouling resistance.  However, they

report an uncertainty in the contact resistance results that is of the same order as the contact

resistance.  Their thermal contact resistance data are not presented as a function of interface
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temperature, pressure, or heat flux.  Further, they do not mention the influence of

thermophysical properties or surface conditions on the thermal contact resistance.

Matal, et al. (1994) studied duplex tubes for use in a liquid sodium heated steam

generator component of a nuclear power plant.  The two tubes studied have either a set of

grooves cut into the outer tube at the interface, or a set of three lands on the inner tube at

the interface, to facilitate leak checking.  Thermal contact resistance is given as a function of

the temperature difference between the liquid sodium inside the tubes and the steam outside

the tubes, and cannot be compared to other published results.  Other results are given as a

function of time.  Many parameters are not reported, including surface finish, conductivity

of the tube material, and interface heat flux.  Further, in contrast to their figure relating

thermal contact resistance to temperature difference, they claim to have “perfect” contact

between the two tube layers.

Abuebid (1984) and Sheffield, et al. (1985a) used the method of Eckels (1974) to

determine the contact conductance of plate-finned, mechanically expanded tubes.  Although

Sheffield, et al. (1985a) identify many parameters that are commonly accepted as being of

importance in thermal contact conductance models, their correlation has no dependence on

material properties, exhibits no influence of contact pressure or heat flux, and neglects

surface roughness and out-of-roundness.  The correlation is essentially a least squares fit

through data for a specific geometry. 

Ernest, et al. (1986), Sheffield, et al. (1987), Wood, et al. (1987a), Wood, et

al. (1987b), Sheffield, et al. (1989), and Sauer and Sheffield (1987) conducted

experimental studies investigating the thermal contact resistance of plate-finned tube coils

in a vacuum.  In their apparatus, the plate fins of several tubes were joined to form tube

sheets.  The apparatus circulated cold water through the outer banks of tubes and hot water

through a center bank of tubes in the coil.  They assumed that the tube conduction

resistance and contact resistance are the same for both the hot tubes and the cold tubes.
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However, since the contact resistance is dependent on the differential expansion of the

contacting materials, it is indirectly dependent on the temperature. 

Ernest, et al. (1986) investigated the quality of the mechanical bond between the

fins and the tube – determining that a pull-out test is an appropriate measure of the strength

of the bond, and thus the quality of the contact.  The actual contact area, however, is

dependent upon surface characteristics and fabrication process, therefore such a pull test

may not be appropriate for all configurations.  Sheffield, et al. (1987) describe a technique

developed to test plate fin tube heat exchangers and to investigate the effects of varying

geometry and manufacturing method. 

Wood, et al. (1987a), (1987b) conducted experimental studies investigating the

thermal contact resistance of plate-finned tube coils, and the effects of various tube coil

parameters on the thermal contact resistance using the same apparatus of Sheffield, et al.

(1985b).  The results seem to imply that there is no dependence of the contact conductance

on temperature, and roughly half of the results presented are within 20% of their

experimental correlation.  In their second study, Wood, et al. (1987b) conducted 32

experiments which examined the effects of the number of fins per inch, tube passes, fin

conduction shape factor, fin-tube interference, and fin thickness on the contact

conductance.  They concluded that thermal contact conductance increases with interference,

but decreases with tube diameter.  Such conclusions are appropriate since interference fits

increase the contact area and increased tube diameter generally involves more out-of-

roundness and a non-uniform pressure distribution.

Sheffield, et al. (1989), and Sauer, and Sheffield (1987) conducted an experimental

study investigating the thermal contact resistance of plate-finned tube coils in a vacuum.

The apparatus was similar to that of Sheffield, et al. (1985a).  They again assumed that the

tube conduction resistance and contact resistance are the same for both the hot tubes and
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the cold tubes.  The correlation presented in this paper extends the range of the one

presented in Sheffield, et al. (1985a). 

Nho and Yovanovich (1989a), (1989b) experimentally studied the effects of surface

condition on the thermal contact conductance of plate-finned tube heat exchangers.  The

method used was similar to that used by Sheffield, et al. (1989), except that the fins

appeared to be instrumented with more thermocouples than in the study of Sheffield, et al.

(1989).  In addition to the same fin and tube parameters generally provided in this type of

study, surface condition information including hardness, roughness, and asperity slope for

both the tube and fin surfaces was provided.  The hardness and conductivity of the oxide

layer found on the contacting surfaces was also given, although no new correlation which

uses this information was provided.  They also examined the contact between the fin and

the tube and found that the apparent contact area varies with the amount of expansion of the

tube into the fin, causing the foot of the fin to either curl, buckle, or displace the heel of the

adjacent fin foot.  Each of these factors affects the contact area, and thus the conductance.

The averaged conductance for each of the finned-tube units compares well with the model

of Sheffield, et al. (1989), being within the uncertainty of the model for most of the finned

tube units. 

Egorov, et al. (1989) studied contact heat transfer resistance in finned-duplex tubes,

which were manufactured by either drawing or pressing.  They present results of contact

conductance as a function of interfacial heat flux.  They observed the effects of unstable

contact between the tube layers, which was investigated in greater detail by Srinivasan and

France (1985), and Barber (1986a, (986b).  No surface metrology is provided, scant

thermophysical property data (of interest due to the type of steel used) is given, and

insufficient geometric information is given to calculate the variation of pressure with

temperature.
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Huang (1994) used a finite element technique to model the flow of heat between

tubes connected by a plate fin to determine the conduction resistance associated with the

geometry.  This method can be used in conjunction with experimental data for plate-finned

tube heat exchangers to determine the resistance due to contact between the tubes and fins.

Previously, electrical analog techniques were used to determine the effect of the fin-tube

geometry on the conduction resistance.  The results of the method were compared with

experimental data of Sheffield, et al. (1989).  For seventeen of the thirty-two datasets used

for comparison, Huang (1994) found that the average absolute error caused by

measurement was 78%, and the average absolute error caused by the one-dimensional

model was 68%.  Further, his calculations for the same seventeen data sets show that while

the one-dimensional model used in the experimental study results in a contact resistance of

approximately 20% of the total resistance, a two-dimensional model results in a thermal

contact resistance of approximately 11% of the total resistance, which indicates that

analyses based on previous experimental studies have overestimated the fraction of the total

thermal resistance due to contact resistance by about 9%.  Huang (1994) concludes that his

analysis would improve the experimental results because it does not assume a one-

dimensional conduction between hot and cold tubes, and is able to avoid the error

associated with that assumption.

Table 2.2 compares the available correlations for conductance through cylindrical

contacts found in finned tubes and tube collars.  Much of this work is empirical, and thus

applicable only to specific geometries and material combinations.  Of particular interest is

the absence of hardness and surface characteristics such as roughness or waviness terms in

the correlations.  All correlations are dimensional.
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Table 2.2 – Correlations for Conductance through Cylindrical Contacts in Finned
Tubes and Tube Sheets

Correlation Comments/Conditions

Gardner and Carnavos (1960)

€ 

Rc = ρ

αf − αt( ) Th − To( ) −µpco

− αf 1− ro
R* + Rg

 

 
  

 

 
  − αt 1− ri

R* + Rg

 

 
  

 

 
  

 

 
 
 

 

 
 
 Th − Ta( )

 

 
  

 
 
 

 

 
  

 
 
 

P < 0.43(t/d - t)0.5

For interference fit  finned-
tubes, pressure based on
elastic theory.  Parameters ρ
and µ defined in paper.
Constant fluid temperatures,
fin base and tube wall are
concentric and smooth, effect
of fluid pressure is negligible

Kuntysh, et al. (1983)

€ 

a)   Rc = 0.552qc
−0.304

€ 

b)   Rc = 0.004185qc
1.115

Empirical curve fit, Air-Air
heat transfer, co-axial circular
find,  interface heat flux
between 2.5E4 and 7.0E4
W/m2.

a)  Constant tube wall
temperature, between 350 and
365 K

b)  Varying tube wall
temperature, approximately
linear from 345 K to 510 K

Eckels (1977)

€ 

hc = 2.555x106 t

do

fpi

t
−1

 
 
 

 
 
 

−2 

 
 
 

 

 
 
 

0.6422

Semi-theoretical, apropos to a
specific geometry and
material combination, no
temperature or material
property dependence.

Sheffield, et al. (1985b)

€ 

hc = 2.815x1023 t

do

 

 
  

 

 
  

10.035
I + 5.207x10−4

L

 

 
  

 

 
  

2.867

6.73% ≤ error ≤ 18.35% ;
do = 0.009525 m ; 6 ≤ N ≤ 20 ;
0.001196 m ≤ L ≤ 0.004219 m ;
0.000165 m ≤ I ≤ 0.000279 m

Mechanically expanded tubes
and tube collars, minor
dependence on material
properties, no influence of
contact pressure or heat load,
apropos to a specific
geometry and material
combination, no temperature
dependence,
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Table 2.2 (continued)

Correlation Comments/Conditions

Wood, et al. (1987a)

€ 

hc = 5.67826exp 6.092+ 2.889
I fpi d

do

 

 
  

 

 
  

0.75

t fpi( )1.25
 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

0.00635 m ≤ do ≤ 0.015875 m;
6 ≤ fpi ≤ 18 ; .
000114 m ≤ t ≤ .000231 m ;
0.000076 m ≤ I ≤ 0.000191 m

Mechanically expanded,
plate-finned tubes - copper
tubes and aluminum fins,
mechanically expanded tubes,
apropos to a specific
geometry and material
combination, no temperature
dependence, nearly one half
of the coils tested fell within
20% of this correlation.

Sheffield, et al. (1989)

€ 

hc = 5.67826exp 7.828+ 2.889
I fpid

do

 

 
  

 

 
  

0.75

t fpi( )1.25
 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

0.009525 m ≤ do ≤ 0.015875 m ;
6 ≤ fpi ≤ 18 ;
0.000102 m ≤ t ≤ 0.000231 m ;
0.000076 m ≤ I ≤ 0.000191 m

Mechanically expanded,
plate-finned tubes, minor
dependence on material
properties,

No influence of contact
pressure or heat load – least-
squares fit for data apropos to
a specific geometry and
material combination,

No temperature dependence.
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GENERAL CONTACT CONDUCTANCE STUDIES

Hertz (1881) made an analytical study of smooth contacting spheres.  Hertzian

contact theory assumes that each contacting sphere is smooth.  While this makes the

mathematics more tractable, real surfaces (which are not perfectly smooth) do not fall into

this category.  However, Hertzian contacts can be used as a limiting case and are at the base

of many contact conductance models for non-conforming surfaces.  Using Hertzian

analysis for the contact between sphere and a plane (Timoshenko and Goodier, 1951),

expressions for the contact area and pressure necessary to deform the sphere to form this

area can be obtained.  The Hertzian elastic modulus used in studies of the deformation of

spheres is defined

€ 

′ E =
E1

1− ν1
2 +

E2

1− ν2
2

 

 
  

 

 
  

−1

(2.1)

Shlykov and Ganin (1964) semi-empirical model of contact conductance for

nominally flat, rough metals, assumes that microcontact radius is constant and unaffected

by roughness or contact pressure.  The model further assumes that the contact hardness is

three times the ultimate tensile strength.

Veziroglu (1967) correlated a significant amount of experimental data, identifying

terms for effective interstitial gap thickness, gap conductance, but finding his effective gap

thickness to be relatively insensitive to surface finish.  Asperity slope and waviness

parameters were not used due to lack of data.  The correlation is difficult to implement due

to its iterative nature.

Clausing and Chao (1964) considered non-flat surfaces, specifically relatively

smooth spheres in contact.  Assuming an elastic macrocontact deformation, they made use

of the Hertzian contact model to determine the macrocontact size and pressure distribution

and contact radius.  The ratio of specimen size to the macrocontact radius was used to
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determine the macroscopic constriction resistance.  Assuming that the microcontact radii

were constant and equal to the roughness, they developed a model for the microscopic

constriction resistance.  They defined a dimensionless group, termed the Elastic

Conformity Modulus, representing the ratio of the elastic deformation of the macrocontact

to the flatness deviation (approximately half the radius of curvature):

€ 

ζ ≡
P

Hm

 

 
  

 

 
  

bL

2ρ

 

 
  

 

 
  (2.2)

The Elastic Conformity Modulus provides a measure of the conformity of the mating

surfaces under load and plays a large role in their macroscopic constriction model.

Greenwood (1967) defines a plasticity index indicating the mode of the

microcontact deformation

€ 

ψG =
′ E 

H

 
 
 

 
 
 m (2.3)

For values of the index greater than 1, the micro-deformation is plastic, for values less than

0.7, the micro-deformation is elastic.

Cooper, et al. (1969) studied the contact conductance of rough, conforming metals

experiencing light to moderate pressure.  The model presumes that the microcontacts

deform plastically.

Mikic (1970) developed models for the macroscopic and microscopic contact

conductance that took into account non-uniform pressure distributions, but did not specify

how the distributions were determined.  The microscopic conductance model uses the

plastic deformation model of Cooper, et al. (1969).

Thomas and Sayles (1974) studied the relative effects of waviness and roughness

on thermal contact conductance.  They observe that the total roughness of a specimen is

related to its size.  Defining a dimensionless waviness number,
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€ 

ξ ≡
L

′ E σbL

(2.4)

Thomas and Sayles (1974) identify the vicinity of 

€ 

ξ ≈ 0.7 to be the point where roughness

and waviness have equal influence over the contact conductance, and that the influence of

waviness can be neglected for values greater than unity.

Yovanovich (1981) refined the model of Cooper, et al. (1969) for plastic

deformation of microscopic contacts on conforming surfaces.

Lambert (1995) and Lambert and Fletcher (1997) developed a model for the

thermal contact conductance of spherical rough metals that is valid in regions removed

from the limiting cases of rough/flat, smooth/spherical surfaces.  It is, however, a single

macrocontact model, and requires loading on the macrocontact as well as the surface

geometry of the contact.  In multiple macrocontact situations, such as those encountered in

large area contacts, it is difficult to estimate number of macrocontact, much less the loading

on each macrocontact.

Table 2.3 lists the dimensional and non-dimensional contact conductance

correlations reviewed in this section. 

COMPARISON OF PUBLISHED RESULTS

Figure 2.2 shows a comparison between the conductance data of Hsu and Tam

(1976) as a function of apparent contact pressure and the models of Ross and Stoute

(1962), Shlykov and Ganin (1964), Veziroglu, (1967), and Lemczyk and Yovanovich

(1987).  Clearly, the model of Lemczyk and Yovanovich (using the effective hardness) fits

the data well, while other models under-predict the data to varying degrees (between 20%

for Ross and Stoute (1962) and 60% for Veziroglu (1967)).  For flat and near flat contacts,

pressure is often chosen as an independent experimental parameter.  In the case of
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Table 2.3 – Thermal Contact Conductance Models

Correlation Comments/Conditions

Ross and Stoute (1962)

€ 

hc =
kePc

0.05H
σ1

2 + σ2
2

2

Modified flat contact model, some
dependence on thermo-mechanical
properties.

Shlykov and Ganin (1964)

€ 

hc = 4.2×104 ksPc

do 345MPa( )
+

kgo

σ1 + σ2

Modified flat contact model,
some dependence on thermo-
mechanical properties.

Clausing and Chao (1964)

€ 

hc,LbL

k
= 2

π
aL ,Hz bL

ψ aL ,Hz bL( ) = 2

π
1.285χ1

3

ψ 1.285χ1
3( )

hc,Sσ
k

=
σ
m

2

π
L πaL,Hz

2

C1H

1

aSψ aS bS( )
Rc,L

Rc,S

= L πaL,Hz
2

C1H

ψ 1.285χ 1
3( )

1.285χ
1

3

bL

aSψ aS bS( )

Spherical smooth surfaces

elastic macroscopic deformation,
plastic microscopic deformation

€ 

χ ≡
L πbL

2

Eh

bL

δ1 + δ2

€ 

aL,Hz = 0.75L ρ E'( )
1

3

€ 

0 ≤ C1 ≤1, is elasto-plastic
deformation correction factor,
1=plastic deformation

Veziroglu (1967)

€ 

N uc =
B+C+

η+ tan−1 1
C+ 1− 1

Nuc

 

 
  

 

 
  −1

 

 
 
 

 

 
 
 

Modified flat contact model,
some dependence on thermo-
mechanical properties.

€ 

B+ ≡ 0.335 C+( )0.315l c l( )0.137

C+ ≡
Pc

H m

 

 
  

 

 
  

1
2

;   η+ ≡ kgoks
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Table 2.3 (continued)

Correlation Comments/Conditions

Cooper, et al. (1969)

€ 

hc σ
k m

=1.45
P

Hv

 

 
  

 

 
  

0.98

3.6E-4 ≤ P/Hv ≤ 1E-2
1.0 µm ≤ σ ≤ 8.0 µm
0.08 ≤ m ≤ 0.16

Nominally flat, rough surfaces.

Mikic (1970)

For axisymmetric pressure distribution P(r):

€ 

hc,S σ
k m

= 2.90
r

bL

P

H

 
 
 

 
 
 

0.985

d
r

bL

 

 
  

 

 
  

0

1
⌠ 

⌡ 
  

hc,L bL

k
= 8

r

bL

P

H

 
 
 

 
 
 

0.985

J0 λn

r

bL

 

 
  

 

 
  d

r

bL

 

 
  

 

 
  

0

1

⌠ 

⌡ 
  

 

 

 
 
 

 

 

 
 
 

2

λ n J0
2 λn( )n=1

∞

∑

 

 

 
 
 
 

 

 
 
 
 

 

 

 
 
 
 

 

 
 
 
 

−1

For unidirectional pressure distribution P(x):

€ 

hc,S σ
k m

= 1.45
P
H

 
 
 

 
 
 

0.985

d
x
bL

 

 
  

 

 
  

0

∞
⌠ 

⌡ 
  

hc,L bL

k
= 4

1
n

P
Pavg

 

 
 
 

 

 
 
 

0.985

cos
nπx
bL

 

 
  

 

 
  d

x
bL

 

 
  

 

 
  

0

∞
⌠ 

⌡ 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

2

n=1

∞

∑
 

 
  

 
 
 

 

 
  

 
 
 

−1

Applicable for spherical and
cylindrical contacts, respectively

P(r) and P(x) undefined
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Table 2.3 (continued)

Correlation Comments/Conditions

Yovanovich (1981)

€ 

hc =1.25
ksm

σ
Pc

He

 

 
  

 

 
  

0.95

+
kgo

Y + αaβΛ

Nominally flat, rough surfaces,

Modification of Cooper, et al.
(1969)

€ 

β = 2
cp cv

cp cv +1

 

 
  

 

 
  

1

Pr

1x10-5 ≤ Pe/He ≤ 1x10-2

2.34 ≤ Y/σ ≤ 4.26
0.14 µm ≤ σ ≤ 14 µm
9.33 µm ≤ σ/m ≤ 40 µm
0.015 ≤ m ≤ 0.35
 0.001 ≤ Λo/σ ≤ 1.5
1 ≤ β ≤ 2
0.04 µm ≤ Λo ≤ 0.19 µm
1x10-4 ≤ kgo/ks ≤ 2x10-2

Lambert (1995)

€ 

hc
* = 1

Rc,S
* + Rc,L

*

Rc,S
* =

Rc,S km

σ
 
 
 

 
 
 

L

H vρσ

 

 
  

 

 
  

0.95
P0

P0,Hz

 

 
  

 

 
  

0.67

bL

aL

 

 
  

 

 
  

2

fS

bL

aL

 

 
  

 

 
  

= 6.15 L*( )0.484

Rc,L
* =

Rc,LkL

ρσE'

 

 
  

 

 
  

P0

P0,Hz

 

 
  

 

 
  

0.20
bL

aL

 

 
  

 

 
  

2

fL

bL

aL

 

 
  

 

 
  g

bL

aL

,L*
 

 
  

 

 
  

= 1.44 L*( )0.954

Rough, spherical contacts

€ 

L* =
2L

σ ′ E 2ρσ

1E-2 ≤ L ≤ 1E10
19.3 GPa ≤ E ≤ 386 GPa
0.8556 MPa ≤ Hc ≤ 2567 MPa
0.1 µm ≤ σ ≤ 10 µm
0.0316 ≤ m ≤ 0.316
1E-2 m ≤ ρ ≤ 1E6
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Figure 2.2 – Comparison between experimental data of Hsu and Tam (1976) for
AL -2011 shell inside SS-304 shell (σe = 5.100 µm) and the models of Ross and
Stoute (1962), Shlykov and Ganin (1964), Veziroglu (1967), Madhusudana (1986),
Lemczyk and Yovanovich (1987), and Yovanovich (1981).
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cylindrical contact conductance phenomenon, contact pressure is not easily measured,

much less independently controlled.

Published experimental data are shown in Figure 2.3 to demonstrate the range of

available information as a function of interface heat flux.  While heat flux is of relatively

little influence for flat and near flat contacts, it appears to be very influential in cylindrical

contact conductance phenomenon.  The conductance-interface heat flux data fall in families,

which can be nondimensionalized. 

Figure 2.4 presents dimensionless thermal contact conductance as a function of

dimensionless interface heat flux.  Heat flow is assumed to be radially outward through an

interface formed by two thick cylindrical shells.  The terms selected to form the

dimensionless heat flux were chosen to form meaningful groupings:

€ 

h* ≡ hc σ
km

 

 
  

 

 
  

q* ≡
qi

" ασ
k

 

 
  

 

 
  

E

H

 
 
 

 
 
 

αi

α o

 

 
  

 

 
  

3
1

2
1+

P

Patm

 

 
  

 

 
  

 

 
 
 

 

 
 
 

2 (2.5)

The dimensionless conductance is the familiar dimensionless term used in flat

contact studies, where contact conductance is nondimensionalized by the ratio of the

effective roughness to the product of the effective conductivity and asperity slope.  The first

term in the dimensionless heat flux is a non-dimentionalization of the heat flux with

effective (geometric mean) thermal expansion, effective surface roughness, and effective

conductivity.  The second term was chosen to account for the effects of effective hardness

and elasticity, increasing hardness will diminish the conductance, while increased elasticity

is expected to increase it.  The ratio of the thermal expansions was chosen to account for

the effect of the differential thermal expansion of the two shells.  If the inner shell expands

faster than the outer shell, then the interface pressure will increase, and so will the
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Figure 2.3 – Experimental thermal contact conductance data for cylindrical contacts as
a function of interface heat flux.
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h* ≡ hc σ
km
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  

 

 
  

q* ≡
q i

" α σ
k
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Figure 2.4 – Dimensionless thermal contact conductance data for cylindrical contacts
as a function of dimensionless interface heat flux.



39

 conductance.  The fourth term is included to represent the effects of an interstitial gas.

Conductance is expected to be higher when there is an interstitial gas.  The whole number

exponents of the third and fourth terms were selected to align the data.  Since the

calculation of the interface pressures is beyond the scope of this study, no attempt is made

to account for their influence.  As predicted by Madhusudana (1986), the effect of interface

fluid on the conductance is smaller than that of the relative expansion of the cylinders that

make the interface.  A power law fit through the experimental data serves as a point of

departure for further analytical studies:

€ 

h* = 9.9122 q*( )0.54424
(2.6)

This correlation has a Pearson’s r value of 9.907E-1, indicating a fairly good fit.

Figure 2.5 compares the relative fit of various plate-finned tube correlations with

experimental data.  Experimental data from the studies of Dart (1959), Eckels (1977),

Sheffield, et al. (1987), and Nho and Yovanovich (1989a, 1989b) were compared with the

values predicted by the correlations of Eckels (1977), Sheffield, et al. (1985b), Wood, et al.

(1987a, 1987b), and Sheffield, et al. (1989) at the same conditions.  The horizontal axis

indicates the measured conductance value and the vertical axis indicates the conductance

value predicted by the correlations.  The data points in the figure are placed at the

intersection of the experimental value and the predicted value for a specific set of

conditions.  A solid line at 45° to the horizontal indicates where the data points would fall if

the experimental results were exactly predicted by a correlation.  Straight lines parallel to

the 45° solid line are a least-squares fit through the all of the data points for each of the

four correlations, and indicate the average over prediction or under prediction of the

corresponding correlation.  Lines that are above the solid line indicate that the

corresponding correlations over-predict the experimental data, while lines that are below the
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solid line indicate that the corresponding correlations under-predict the experimental data.

The patterns made by the data on this figure are also of interest.  While the data are

scattered over the entire domain of the plot, a careful analysis of the data indicates that

conductance values for finned tubes are generally low.  

Examination of Figure 2.5 shows that the correlation of Eckels (1977) under-

predicts the data by approximately 52%.  The pattern formed by the data points is a wide

band across the center part of the figure.  The correlation of Sheffield, et al. (1985b) over-

predicts the experimental values by approximately 700%.  The correlation does not have a

good correlation with the published experimental data (as exhibited by the wide scatter of

corresponding data points).  Further, the values predicted by this correlation span more

than two orders of magnitude, while the experimental data spans slightly more than one.

Some of the data points for this correlation lie near the bottom of the figure, while others lie

near the top.  This wide range of predicted values may be a result of the large exponent of

the fin thickness–tube diameter ratio.  The correlation of Wood, et al. (1987a) under-

predicts the data by approximately 17%, and the associated data points exhibit a banded

pattern across the lower part of the figure.  The correlation by Sheffield, et al. (1989)

under-predicts the data by an average of approximately 55%.  The data points associated

with the correlation exhibit a banded pattern across the middle part of the figure.  The

proposed correlations of Wood, et al. (1987a) and Sheffield, et al. (1989) have limited

utility at low values of thermal contact conductance, since both have a lower bound inherent

in the form of the correlation.

SUMMARY

Cylindrical contacts occur in many diverse applications.  As a consequence,

conduction through cylindrical contacts is an important phenomenon to understand.

Cylindrical joints behave differently than flat joints.  In flat contacts, interface pressure can
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be monitored and controlled independently of the heat flux through the interface, and

thermal contact conductance results are often presented as a function of interface pressure.

In cylindrical contacts, the interface pressure is dependent on the initial degree of fit and the

differential expansion of the cylinders (which is due to the temperature difference at the

interface and to the temperature distribution within the individual cylindrical shells).  As a

consequence, the heat flux is far more important for cylindrical contacts than it is for flat

contacts. 

The present investigation provides a comparative study of the thermal contact

conductance in cylindrical contacts for selected materials and conditions.  While there are

more studies devoted to thermal conduction through cylindrical contacts than there were six

years ago, this phenomenon is still rather underrepresented in the literature.  The available

experimental data may not include all of the information required by current contact

conductance models, including material designation, microhardness, or surface roughness

and waviness (axially and circumferentially).  There is a need, therefore, for more, quality

experimental data.  Sufficiently complex models may be able to more adequately predict

the behavior of specific finned tube applications.  Based on this review, it is evident that

some areas of cylindrical thermal contact conductance have not been adequately

investigated, including the effects of macroscopic eccentricities such as out-of-roundness

and waviness.  There are still many gaps in our understanding that need to be explored,

hence the present investigation. 
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CHAPTER III

EXPERIMENTAL PROGRAM

Many factors influence experimental design.  The design of the apparatus must

balance the requirement of appropriate scale with the restriction of available resources.  The

apparatus must facilitate the measurements that need be made for calculation of the

quantities of interest.  Appropriate steps must be taken when designing an experiment to

reduce the uncertainty of the experimental results.  Some sort of control must be exerted on

the experiment to ensure repeatability (which assures the reliability of the experimental

results).  Instrumentation and data acquisition equipment must be able to make accurate

measurements over the expected range of experimental variables at the appropriate times.

Precautions must be taken to ensure the safety of those involved and to prevent damage to

the experimental facility.  Additionally, in order to have reliable experimental results, the

values of appropriate parameters must be known as a function of temperature.  This chapter

discloses and explains these details of the experimental design and the experimental

procedure.

DESIGN OF APPARATUS

In order to evaluate the thermal contact conductance through cylindrical interfaces,

an apparatus was designed to obtain data over a range of material and thermal conditions.

The primary feature of the experimental apparatus is the assembly of co-axial cylindrical

shells (each made from one of four different materials: CU-102, AL-6061, BR-360, or SS-

304).  These materials, with a wide range of thermophysical properties, were chosen so that

the material properties part of a parametric study would have enough variability to be

meaningful.  These materials are also in relatively wide use, somewhat easy to machine, and
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readily obtainable.  The nominal properties of the materials used in this investigation are

listed in Table 3.1.

The dimensions of the cylinders were determined after considering the constraints

of available space within the vacuum system, maximum available electrical power, mass of

components, available instrumentation, and the desired range of interface heat fluxes.  The

cylindrical shell thicknesses were dictated by available metal stock sizes and the diameter of

the heater.  The nominal interface diameter, 0.0508 m, was chosen so that stock heaters

could be used to produce a range of interface heat fluxes approaching those of previously

published results.  Shell clearances were selected to facilitate room-temperature assembly

while providing appropriate contact pressures at operating temperatures.  Future

experiments should consider variation of the shell thicknesses and the interface clearance to

fully investigate the effects of shell geometry on the contact conductance. 

Table 3.1  – Nominal Material Properties at 300 K (from Touloukian and Ho, 1972)

Copper
Alloy 102

Aluminum
Alloy 6061

Brass 360
70% Cu, 30% Zn

Stainless Steel
Alloy 304

Thermal Conductivity,†

k, W/m-K 401 154.9 110 16.3

Density, †

ρ, kg/m3 8933 2700 8530 7900

Specific Heat, †

cp, J/kg-K 385 962.9 380 502

Modulus of Elasticity, †

E, GPa 110 70 110 193

Poisson’s Ratio, †

ν, unitless 0.35 0.33 0.35 0.27

Coefficient of Thermal
Expansion, †

α, 10-6 m/m-K
16.5 23.4 19.9 17.3

†  Reported uncertainties in these values are within 3.5%.



45

Heat was supplied to the assembly by a 0.1397 m long, 0.00127 m diameter,

1000 W cartridge heater placed along the axis of the inner cylinder.  This provided a

maximum heat flux of 4.93E4W/m2 at the nominal interface diameter of 0.508 m.  Thin,

multi-layer, foil radiation shields were placed at the ends of the assembly to reduce heat

losses due to radiation from the flat, end surfaces of the assembly, and to promote one

dimensional, radial conduction through the cylinders.  Heat is removed from the assembly

by two cooling rings that are held onto the external surface of the outer cylinder with hose

clamps.  The cooling rings used in this investigation are shown in Figure 3.1.

Each of these cooling rings is constructed of three loops of 0.00635 m (0.25”)

copper tubing soldered onto two 0.0508 m (2”) wide copper straps.  Sufficient solder was

used to completely fill the spaces formed by adjacent courses of tubing and the copper

strap beneath them.  Prior to soldering the tubes onto the straps, the straps were formed

into arcs that would fit snuggly onto the outer cylinder.  Relief arcs were formed in the

tubing courses during fabrication to allow the rings to expand to facilitate assembly.  The

rate of coolant flow through the cooling rings (approximately 30 l/min) was assumed to be

sufficient to maintain a near-uniform exterior surface temperature.  In practice, the

temperature difference between the supply and return legs of the coolant at the feed-

through ring was negligible.

After assembly, the experimental apparatus was located within a vacuum enclosure

to reduce the heat losses due to convection during testing.  The apparatus was placed upon

a four-point support to minimize heat losses due to conduction during testing.  The vacuum

within the chamber was maintained by an oil diffusion pump backed by a roughing pump.

Figure 3.1 shows partially assembled pair of cylindrical shells with attached

cooling rings and a partially inserted heater.  Eight of the sixteen thermocouples installed in

the two cylinders are visible on the left side of the figure.  The outer cylinder has been

instrumented with strain gages at the mid-plane, between the two cooling rings.  The tube-
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hose coupling at the top right of the figure is one of two the supply or return chilled water.

Power leads for the heater and lead wires from the thermocouples and strain gages would

be connected to appropriate feed-throughs within the vacuum chamber.

INSTRUMENTATION

In order to calculate the thermal contact conductance at the interfaces used in this

investigation, it is necessary to have measurements of the temperature distribution within

each of the cylinders.  Also, since the pressures at the interface are of interest, some means

of determining this empirically was desirable.  All sensors were connected to an automated

Figure 3.1 – Partially assembled test fixture.  Indicated parts are (A) thermocouples,
(B) 1000 W heater, (C) inner cylindrical shell, (D) outer cylindrical shell, (E) cooling
rings, and (F) a strain gage rosette.
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recording and test control system to facilitate data acquisition.  The data acquisition system

also served to increase the repeatability of test results by providing a consistent criterion for

the determination of steady state.

Thermocouples

The temperature distribution within each cylinder is monitored by eight fiberglass

sheathed, AWG 36, special limit of error (SLE) grade, Chromel-Alumel (type K)

thermocouples.  The SLE grade thermocouples have a vendor-specified error of ± 1.1 K,

and generally have a smaller error.  Characterization testing of the wire used in the present

study revealed an average error of ± 0.3 K for the wire from the same spool that was used

for instrumenting the cylinders in this investigation.  See Appendix E for details.

The thermocouples are located within each cylinder so that there are two

thermocouples at each of four different, evenly spaced, radial locations, placed opposite to

each other.  The thermocouples were installed in holes drilled parallel to the central axis of

the cylindrical shell, to different depths (varying from 0.01270 m to 0.02794 m, dependent

on radial location), and offset 5° from each other circumferentially.  These different depths

and offsets were used to ensure that the thermocouple beads were located far enough away

from each other that the distortion of the temperature distribution due to the presence of the

other holes would be minimized.  Small amounts of fine powdered copper were tamped

into the holes prior to installation to assure that the thermocouples reported a reading

representative of the temperature in the material around the holes.  The SLE grade

thermocouple leads were connected to extension grade wire (used in the feed-through ring)

within a shielded isothermal block.

Strain Gages

Metal foil strain gages were evenly placed about the mid-plane on the exterior

surface of the outer shells to facilitate the measurement of the average circumferential and
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axial expansions of the outer cylinders.  The places where the strain gages were to be

mounted were slightly roughened with steel wool and cleaned prior to cementing the strain

gages.  Great care was taken to ensure alignment of the four dual-gage encapsulations with

the mid-plane and main axis of each cylinder.  Solder terminals for each of the gages were

located near each encapsulation, and terminals for the gage array were located and fixed to

the cylinder on the mid plane.  Moderate pressure was applied to each encapsulation during

the temperature curing process for the adhesive, at least 50 K above the expected service

temperature for at least two hours (in accordance with Measurements Group Instruction

Bulletin B-129, Measurements Group, Inc., 1999c).

The temperature distribution within the outer cylinder can be used with Lamé

thermal stress relations to calculate the amount that the exterior surface should expand due

to temperature.  The difference between the measured and calculated expansion is

presumed to be due to the pressure exerted on the outer cylinder by the inner cylinder at

the interface.  The relevant equations for this pressure calculation can be found in

Appendices D and E.  The uncertainty of the strain measurement ranged from 20% to

300%, while the uncertainty in the calculated pressure approximately ranged from 5% to

140%.  Data that had excessively high uncertainties (greater than 30%) were not used in

any of the correlations or figures in Chapter IV.  

Data Acquisition and Control System

The devices used to monitor and record thermocouple and strain gage data are

National Instruments FieldPoint modules, driven by software within a National Instruments

LabView program.  These 16 bit A/D devices have an effective resolution of 0.03125 K for

the thermocouple modules, and 1.984E-6 VDC for the voltage measurement modules used

to monitor strain gage output.  Additional input/output channels are provided by the

National Instruments PC/MIO E-series card mounted on the data acquisition
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microcomputer.  The 12 bit A/D input channels, used to measure the strain gage excitation

voltage, have a resolution of 0.0051 VDC.  The 12 bit A/D output channel, used to send a

DC voltage to the heater op-amp, has a resolution of 0.00122 VDC, corresponding to a

heater power resolution of 0.244 W.  Control program operational details are covered later.

MATERIALS CHARACTERIZATION

As previously mentioned, the four materials used in this study were chosen for their

machinability, their wide variation of thermophysical properties, and their availability.  Of

particular interest in this investigation are the thermal conductivity and coefficient of

thermal expansion (CTE) of the test materials.  Both of these properties strongly influence

the thermally induced stresses within and at the interface between the cylinders, and the

thermal conductivity obviously plays a large part in the conductance at the cylindrical joint.

Other material properties (such as Young’s modulus, Poisson’s ratio, and thermal

diffusivity) can be either obtained from thermophysical properties tables or derived from

measured quantities with sufficient accuracy for the purposes of this investigation.  The

procedures used to determine these quantities are described below. 

Coefficient of Thermal Expansion

The coefficient of thermal expansion (CTE) is typically measured by means of

processes that adhere to ASTM Standard E 228-95 (ASTM, 2002).  Processes that adhere

to this standard utilize a sensitive dial indicator or electronic transducer to compare the

expansion of cylindrical specimens of a quartz or vitreous silica expansion standard with

the expansion of specimens of unknown coefficients of thermal expansion.  However,

making measurements with these dilatometers can be an exacting task, especially if there

are no such facilities at hand with trained personnel.  Micro-Measurements Technical Note

TN-513-1 (Measurements Group, 1999a) describes a method to use metal foil strain gages

to measure the coefficient of thermal expansion with acceptable accuracy.  The method
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makes use of unidirectional strain gages and a thermal expansion standard to provide a

means of comparing the expansion of materials of interest to that of the known material.

Since titanium silicate has a very low and well-characterized coefficient of thermal

expansion, it was selected for use as the thermal expansion reference.  The linear thermal

expansion of the titanium silicate expansion standard is given in Figure 3.2, with data

supplied by C. L. Davis of Corning, Inc. (2000).

The titanium silicate bar (0.1624 m x 0.0254 m x 0.00635 m) was instrumented

with one Micro-Measurements WA-06-250BG-120 strain gage, a 120 ohm unidirectional,

encapsulated gage.  Cylindrical samples (0.0254 m diameter, 0.0762 m long) of each test

material were each instrumented with a WA-06-250BG-120 strain gage.  Each gage was

located at the mid-plane of the specimen, aligned with the major axis of the specimen.  An

AWG 36, special limit of error (± 1.1 °C) Chromel-Alumel thermocouple was mounted

0.0191 m deep into one end along the axis of each of the metallic specimens.  All sensors

were connected to appropriate bridging equipment and to National Instruments FieldPoint

data acquisition modules, driven by a microcomputer running a National Instruments

LabView program.  All strain gages and thermocouples used in these characterization tests

were taken from the same package or reel, to minimize errors due to manufacturing

inconsistencies.

Prior to characterization, the specimens were cycled between the maximum and

minimum test temperatures three times to redistribute any residual stresses (which would

make the measurements non-repeatable).  During testing, all specimens were placed on a

glass wool pad within a controlled-temperature furnace to reduce the resistance to

expansion due to friction.  The furnace was set to a desired temperature and the LabView

program was started.  The program monitored the temperatures reported by the

thermocouples within the metal specimens.  When steady state was achieved the voltage
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across appropriate points of the bridge were recorded and converted to apparent strain.

Since the thermocouple wire used to instrument the CTE specimens is of the same roll as

the wire used in the other experiments in this investigation, a standard uncertainty of

± 0.3 K is assumed to be appropriate.

Following the procedure recommended in TN-513-1 (Measurements Group,

1999a), the strain of the reference specimen was subtracted from these apparent strains of

the test materials, and the resulting values were plotted as a function of temperature and

compared with the expected values obtained in Touloukian and Ho (1972).  There

experimentally obtained data have good agreement with the suggested handbook values,

and due to the relatively small amount of data, the polynomial expressions for the

coefficient of thermal expansion for these materials will be used.  The coefficients for the

polynomial expression of the coefficient of thermal expansion as a function of temperature

given in Table 3.2 are the recommended values from Touloukian and Ho (1972).

Table 3.2 – Polynomial Coefficients for Coefficient of Thermal Expansion
(Touloukina and Ho, 1972)

€ 

α T( ) = ai T
i

i

∑ AL-6061 BR-360 CU-102 SS-304

a0 -1.5796E+01 4.5359E+01 -1.0837E+00 9.4031E+00

a1 4.8889E-01 -2.9227E-01 1.3650E-01 2.1573E-02

a2 2.4976E-03 1.1815E-03 -3.7885E-04 -1.3461E-05

a3 6.1407E-06 -2.3416E-06 4.0396E-07 8.8909E-09

a4 -7.0032E-09 2.2972E-09 -3.1051E-10 8.0024E-12

a5 2.9983E-12 -8.7285E-13 7.2562E-14 2.7007E-15
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Determination of Thermal Conductivity

The thermal conductivity of the materials used in this investigation was determined

by means of the cut-bar method.  This method, as employed in this investigation, imposes a

flow of heat through a stack of instrumented cylindrical samples.  Samples of known

conductivity are placed on either side of a sample of unknown conductivity, and heat is

introduced at one end of the stack and removed at the other.  The heat flux through each

sample of known conductivity (or heat flux meter) is calculated using Fourier’s Law, the

temperature dependent conductivity of the heat flux meter, and the temperature gradient

within the heat flux meter.  Similarly, given the average heat flux through the sample of

unknown conductivity and the temperature gradient within the sample, the thermal

conductivity of the sample can be calculated.

The experimental test facility (Figure 3.3) consists of a vertical frame with sliding

plates which support a load cell, a pneumatic bellows, two source-sink holder assemblies,

calibrated heat flux meters, and the test specimens.  An axial force is applied to the test

column by the pneumatic bellows and is monitored by the load cell.  This force is

transmitted through two hardened steel spheres to the source-sink holder assemblies, and

thence to the test specimens.  Since the steel spheres do not support a moment, this

arrangement ensures a uniform pressure over the test surfaces.  Heaters and integral

coolant passages in both the top and bottom heat flux meter holding assemblies facilitate

control of the temperature at the interface of interest or the average temperature of the

specimen.  The facility is housed in a vacuum bell jar to reduce the radial heat losses due to

convection.  Stack pressure and specimen temperature sensors are connected to a Hewlett-

Packard 3497A data acquisition control unit, and then to the controlling microcomputer.

Interface pressure and temperature are controlled by a test control program on the

controlling microcomputer.  Principal inputs to the test control program include the flux



54

Lock Nuts

Top Plate

Threaded Rod

Linear Bearing

Upper Movable
Plate Load Bellows

Load Cell Lower Movable
Plate

Ball Bearing
Source-Sink

Holder Assembly

Guide Shaft

Base Plate

Source-Sink
Holder Assembly

Ball Bearing

Test Specimens

Radiation Shield

Vacuum Bell

Figure 3.3 – Cut-bar thermal conductivity facility used in this investigation.
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meter material, thermocouple placement and specimen geometry, desired test pressure, and

an array of test temperatures.

The specimens and heat flux meters used in this experiment were 0.0254 m

diameter cylinders, 0.0381 m long.  The flux meters were made from NIST-supplied

electrolytic iron, and the conductivity test specimens were made from the same material as

the cylindrical contact conductance specimens.  The roughness of the flat, circular surfaces

was specified to be less than 25 µm to ensure good contact between the heat flux meters

and the test specimens.  The heat flux meters and test specimens were each instrumented

with five fiberglass sheathed, special limit of error (± 1.1 K), Chromel-Alumel (type K)

thermocouples at 0.00635 m intervals along their length.  The thermocouples were installed

in holes drilled to the axes of and at 0.00635 m intervals along the length of the flux meters

and the specimens.  Fine powdered copper was tamped into the holes to assure that the

thermocouples reported a reading representative of the temperature in the material around

the holes.  Each thermocouple wires was wrapped around the flux meters or specimen (to

minimize errors due to heat conduction away from the thermocouple beads). 

Prior to installation within the test stack, the contacting surfaces of each specimen

and flux meter were cleaned and coated with a thermally conductive grease and they were

placed between the source/sink holders.  The thermally conductive grease reduces the

power required by the heater to maintain the test specimen at a desired temperature by

reducing the temperature discontinuities at the interfaces between the specimens, heat flux

meters, and source/sink holder assemblies.  Alignment of the specimens with the heat flux

meters was meticulously checked to avoid uncertainty errors in the macroscopic conduction

area.  A radiation shield was placed around the stack to minimize radial heat loss and the

associated uncertainty in stack heat rate.  After ensuring that all sensor and coolant

connections were sound, the chamber was closed and evacuated.  Tests were conducted at
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chamber environmental pressures less than 0.13 Pa (5.00E-3 Torr), which were maintained

by an oil diffusion pump backed by a two stage roughing pump.

The desired stack pressure and the different mean test specimen temperatures were

then entered into the control software, along with the stack geometry, and testing was

initiated.  The test control program monitors and controls the interface pressure and the

temperatures reported by the thermocouples, adjusting the power to the heater and pressure

within pneumatic bellows to maintain the specified specimen temperature and interface

pressure operating conditions within a consistent range (typically within 1% of the set

point values).  A nominal stack pressure of 1.379E6 Pa was used to ensure good contact

between the test sample and the heat flux meters.  The thermal conductivity of the test

samples was evaluated over a range of temperatures from 300 K to 450 K.  Sixteen

temperatures were used to span this temperature range.

All conductivity measurements were taken while the specimens were at steady state.

The control software ascertains that steady state has been reached when the variation of the

control parameters and the measured value does not exceed the specified drift tolerance

range for thirty minutes.  Heat fluxes are obtained by using a least squares fit of the

temperatures at known locations within the heat flux meters to determine the average heat

flux through the test stack via Fourier’s Law.  The thermal conductivity of the test

specimen is obtained by dividing the average heat flux by the averaged temperature gradient

through the specimen.  After the data have been recorded to disk, the program either

proceeds to the next set of conditions or terminates power to the heater and ends the test,

whichever is appropriate.  Figure 3.4 shows the results of these thermal conductivity tests,

along with other published data for similar materials, and Table 3.3 lists the fifth order

polynomial coefficients of the least-squares line through the data.
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Surface Characterizing

Prior to commencing the experimental investigation, the cylindrical shells to be

used in the experiment were sent to the Mahr-Federal Corporation for surface

characterization.  Data obtained in this characterization are presented in Appendix C.  In

addition to the standard linear roughness and waviness parameters, the cylindricity,

roundness, and circumferential waviness of the contact surfaces are also provided.

Some of these parameters (flatness, cylindricity, roundness) are related to geometric

dimensioning and tolerancing terms, and are sometimes used interchangeably.  Flatness is

the condition where all points on a surface lie on the same plane.  A flatness tolerance is the

spacing between two parallel planes between which all points on the nominally flat surface

must lie.  A flatness tolerance zone is a space aligned with the specified surface bounded

by the two parallel planes.  Similarly, circularity (or roundness) is the condition where, on a

cylinder or cone, all points on the surface intersected by a plane perpendicular to the axis

are equidistant from the axis.  A circularity tolerance is the spacing between two concentric

circles between which all points on the surface intersected by a plane perpendicular to the

Table 3.3 – Experimentally Determined Polynomial Coefficients for Thermal
Conductivity

€ 

k T( ) = ai T i

i

∑ AL-6061 BR-360 CU-102 SS-304

a0 2.4631E+04 1.4930E+04 3.8046E+04 -3.4083E+03

a1 -3.4347E+02 -2.1185E+02 -5.4048E+02 4.5791E+01

a2 1.9173E+00 1.2008E+00 3.0809E+00 -2.4336E-01

a3 -5.3156E-03 -3.3771E-03 -8.7093E-03 6.4219E-04

a4 7.3167E-06 4.7132E-06 1.2199E-05 -8.4147E-07

a5 -3.9984E-09 -2.6105E-09 -6.7705E-09 4.3818E-10
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axis must lie.  A circularity tolerance zone is the space between the two concentric circles.

Cylindricity may be visualized as a combination of flatness and circularity, extended to an

entire cylindrical surface.  A cylindricity tolerance is the spacing between two concentric

cylinders between which all points on a nominally cylindrical surface must lie.  

Throughout the test program, surface characterization measurements of the

contacting surfaces were made.  Since circumferential measurements are beyond the

capacity of the SurfAnalyzer 5000 available for use, only axial measurements could be

checked over the course of the test program.  The change in the axial roughness of the

cylindrical surfaces over the course of testing was within the uncertainty of the

SurfAnalyzer 5000 used.  There were, however, small scratches on the surface where the

parts rubbed against each other during assembly. 

DETERMINATION OF THERMAL CONTACT CONDUCTANCE

As defined in Chapter I, thermal contact conductance is the ratio of the heat flux

across an interface defined by two surfaces and the magnitude of the temperature

discontinuity at that interface.  The heat fluxes through the cylindrical interfaces examined

in this study were calculated by dividing the average rate heat transferred through the inner

and outer shells, as calculated through Fourier’s Law, by the nominal interface area.

Fourier’s law is also used to relate the thermal conductivity and the known temperature

distribution in each of the cylinders to the inner and outer interface temperatures, and thus

to the magnitude of the temperature discontinuity at that interface. 

With four different materials used to make the inner and outer shells, compound

cylinders with sixteen different material combinations are available for testing.  In addition

to the effects of the different temperature-dependent thermophysical properties of the

materials, different surface characteristics influence the heat transfer as an effect of each

material combination.  The surface roughness, asperity slope, and room-temperature
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interface clearance play a role in the contact conductance.  Table 3.4 lists these test

parameters. 

Certain material combinations (such as aluminum/copper or aluminum/brass) are

susceptible to galling or cold welding, so the time that the cylinder pairs are assembled was

minimized.  Galling and cold welding are welding processes that use molecular migration

at room temperature to join metals.  Galling is adhesion or welding during sliding contact.

Since the assembly of the compound cylinders takes place manually and is followed

immediately by a slight rotation of one cylinder with respect to the other, it is unlikely that

any “sticking” of the shells together would pass unnoticed and the effects of galling are

avoided.  Cold pressure welding is the process where high contact pressures (1.4E6 –

5.6E6 Pa) break surface oxide layers to allow molecular bonding to take place between the

Table 3.4  – Test Interface Geometry Parameters

Inner Cylinder Material

AL-6061 BR-360 CU-102 SS-304

δri, m 1.799E-05 1.908E-05 2.193E-05 1.334E-05

σe, m 6.896E-05 1.053E-04 8.835E-05 7.736E-05
AL-
6061

me 1.475E-01 1.475E-01 1.475E-01 1.475E-01

δri, m 1.156E-05 1.265E-05 1.549E-05 6.900E-06

σe, m 7.595E-05 1.100E-04 9.391E-05 8.366E-05BR-360

me 1.535E-01 1.535E-01 1.535E-01 1.535E-01

δri, m 4.233E-07 1.512E-06 4.360E-06 -4.233E-06

σe, m 4.806E-05 9.295E-05 7.321E-05 5.950E-05CU-102

me 1.984E-01 1.984E-01 1.984E-01 1.984E-01

δri, m 1.281E-05 1.389E-05 1.674E-05 8.149E-06

σe, m 7.146E-05 1.069E-04 9.031E-05 7.960E-05

O
ut

er
 C

yl
in

de
r 

M
at

er
ia

l

SS-304

me 1.605E-01 1.605E-01 1.605E-01 1.605E-01
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uncontaminated subsurface metals.  Typically, ductile metals and alloys are good

candidates for this process. 

The selection of the heater settings is influenced by the maximum temperatures

allowed.  The thermocouple insulation has a maximum service temperature of 700 K and

the stainless steel will start to undergo a phase transformation at 670 K.  The elastic

modulus of all materials will become nonlinearly variable at temperatures above 570 K and

the solder has a maximum service temperature of 565 K.  The epoxy used to pot the

thermocouples softens at elevated temperature (at least, until it is completely out-gassed),

but since no strain was applied to the wire this was not taken into account to determine the

over-temperature condition.  The temperature used to determine if an over-temperature

condition existed was 550 K, ensuring that none of the components or instrumentation

were damaged. Preliminary testing of the test facility and program revealed that maximum

heater settings could be used without violating the over-temperature criteria.  Therefore, all

testing included the maximum heater setting. 

Test Plan

For each of the sixteen material combinations used in standard conductance testing,

at least twelve heater settings were used: 0 W, 300 W, 500 W, 600 W, 700 W, 750 W, 800

W, 850 W, 900 W, 950 W, 1000 W, 501 W, 1 W.  More data points were collected at

higher heater settings, since it was assumed that there would be better contact and thus

more interesting information at those conditions.  The initial, 0 W, setting provided an

opportunity to check sensor connections, thermocouple uncertainty, and initial strain gage

tare.  The last two settings allowed some measure of test repeatability.  The typical time

from a change in heater set point to steady state was roughly one hour.  At lower heat rates

(300 W and lower), either the interface pressures were too low or the uncertainties in the

contact conductance were too high to provide valid conductance data. 
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Some additional experiment test series were run to test experimental repeatability,

using the same heater settings and coolant flow rates as initial experiments for a given pair

of cylindrical shells.  The cylindrical shells were aligned differently for each repeatability

series, offset by at least 45° from the initial assembly alignment.  In other experiments the

heater settings were cycled between two values to examine the effect of repeat loading on

the thermal contact conductance.  One experiment was run to determine if hysteresis

phenomena were of importance, but the differences between the increasing heat flux leg

and the decreasing heat flux leg were lost in the uncertainty of the contact conductance and

interface heat flux.  These supplemental experiments were run after all other testing was

completed. 

Sample Preparation and Assembly

After the cylindrical shells were cleaned, the working order of every thermocouple

in each cylinder was verified and the condition of their mounting was examined for

potential failure.  The resistance across each strain gage and both strain gage arrays were

checked to verify that the gages were in good working order.  Prior to cylinder assembly,

the interior contacting surfaces of the cooling rings were coated with thermal grease,

mounted onto the exterior surface of the outer cylinder, and connected to each other.  The

coolant ring and outer cylinder subassembly was then placed on the test stand.  Coolant

feed-through lines were attached to the inlet and outlet connectors of the coolant rings and

fluid at 323 K was allowed to flow through the coolant loop.  While the outer cylinder was

being warmed by fluid, the contacting surfaces of the inner and outer cylinder were cleaned

again with methanol.

The posterior thermocouple lead wires and connector plugs of the inner cylinder

were carefully threaded through the opening in the outer cylinder.  The inner cylinder was

oriented so that the thermocouples on either the posterior or the anterior sides were not
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aligned with the thermocouples on the outer cylinder.  As the inner cylinder was gently

inserted into the opening, the posterior lead wires, having been wrapped in lint-free tissue,

were gradually pulled though so that they wouldn't contaminate the contacting surfaces.

Axial alignment of the cylinders was verified by touch.  In a few instances, the inner

cylinder was slightly longer than the outer cylinder, but not more than 0.001 m.  In these

cases, the posterior surfaces of the cylinders were aligned and the discontinuity was

allowed at the anterior end of the assembly.  After the cylinders were aligned, the cartridge

heater was coated with a thin layer of thermal grease and inserted with a rotary motion into

the heater cavity at the axis of the inner cylinder.  This was done to ensure an even coating

of grease throughout the length of the cavity.  Excess grease was wiped from the exposed

surfaces of the cylinders and heater alignment was verified.  

The thermocouple lead wires on both sides of both cylinders were placed so that

they did not rest on any part of the heater, and their connector plugs were inserted into the

appropriate sockets.  The leads from the longitudinal and circumferential strain gage arrays

were connected to the appropriate signal feed-through wires.  The feed-through wires were

connected to appropriate bridging equipment and to National Instruments FieldPoint data

acquisition modules, monitored by a microcomputer running a National Instruments

LabView program.  The thermocouple and strain gage channels on the data acquisition

system were observed to verify that the sensors were in working order.  The heater power

leads were threaded through the hole in the anterior radiation shield and the shield was

mounted onto the test fixture.  The heater power leads were then connected to the power

feed-through and the power connection continuity was verified.  Figure 3.5 shows the test

fixture prior to heater insertion and assembly of the radiation shield.

After the cylinders were assembled and the thermocouple, strain gage, and heater

power leads were connected, the test chamber was sealed and connected to the roughing

pump.  After the pressure sensor within the chamber registered less than 0.001 Torr, the
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constant temperature bath was disconnected, the chill water flow was introduced through

the cooling rings, and the test assembly was allowed to come to a near-steady state while

the chamber pressure continued to its maximum vacuum level.  This was done so that there

would not be any possibility of condensation contaminating the interfacial surfaces.

Control Program

At the heart of the data acquisition and control system used in this investigation was

a microcomputer running the National Instruments LabView software package.  The test

control and data acquisition program was constructed using LabView’s graphic interface,

by essentially placing “components” and “wiring” them together.  Since a complete

reproduction of the various screens and windows of the program is meaningless to those

Figure 3.5 – Partially assembled test fixture on test stand.
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who are unfamiliar with the LabView system, a flow diagram and pseudocode of the

program, detailing its operation, are found in Appendix B.

The desired heater power range array was populated by heater settings (essentially

percentages of full power).  When running, the program would deliver a 0-10 V DC signal

to the op-amp such that the desired amount of power energized the heater.  The op-amp

operates on a five second, two-cycle time basis.  For example, a 10 V DC signal to the op-

amp would energize the heater with 120 V AC power for the full five seconds; a 5 V DC

signal would energize the heater with 120 V AC power for two and a half seconds,

followed by two and a half seconds without power; and a 1 V DC signal would energize

the heater for a half second, followed by four and a half seconds without power.

At each heater power setting, thermocouple and strain gage outputs were monitored

until steady state was achieved.  It is important to be certain that the measurements are

being done at steady state.  Unless the assembly is at steady state, calculations of the

average heat conduction rate through the cylinders will have unacceptably high

uncertainties, of the same order of magnitude as the calculated value.  These uncertainties

will cascade through the data reduction, rendering the calculated values of the thermal

contact conductance and interface temperature useless.  Steady state is defined for the

purposes of automated data acquisition when the variation of each of the measured and

calculated temperatures is less than 0.15 K per half-hour.  This value of allowable drift is

related to the uncertainty in the interface heat flux (due to temperature drift) that varies with

interface heat flux.  An analysis of the influence of allowed temperature drift on the

calculated value of the interface heat flux is given in Appendix E.  When steady state was

observed to have been achieved, the strain gage and thermocouple readings were taken and

recorded, appropriate parameters calculated, and the next heater setting sent to the op-amp.

At the end of the assigned tests for a test assembly, the control program sets the heater

power to zero and stops running.
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Data Reduction

While the test control program calculated the values of the interface heat flux and

thermal contact conductance for the purposes of determining steady state, post-

experimental processing was required to determine the interface pressure.  A spreadsheet

program was used to calculate these interface pressures, as well as the interface heat flux

and interface temperatures.  Relevant values are reported in Appendix C.  The relevant data

reduction and uncertainty algorithms are detailed in Appendix E.  
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CHAPTER IV

RESULTS AND DISCUSSION

Results of the experimental investigation and a discussion of those results are

presented in this chapter.  Sample calculation of results and an associated uncertainty

analysis for a selected data point may be found in Appendix E.  The results are presented

dimensionally on a heat flux basis and on an interface pressure basis.  The results are also

presented non-dimensionally with previously published results, previously published

correlations, and with empirically derived correlations.  In this chapter, data sets are

identified by a two-letter label.  The first letter indicates the inner shell material (A –

aluminum 6061, B – brass 360, C – copper 102, and S – stainless steel 304), and the

second letter indicates the outer shell material.  Similar nomenclature is used when

presenting previously published results, insofar as it is possible.

Power law correlations are used to correlate conductance data from the present

study, as well as previously published data, since log-log plots of the data appear to be

linear.  Power law correlations presume that one variable is proportional to another variable

raised to some exponent.  Compound power law correlations take this further, by relating

one variable to the product of several variables, each raised to a different power, multiplied

by some scaling factor. 

Pearson’s r, also known as the correlation coefficient or Pearson’s correlation

coefficient, has values between –1 and +1, inclusive.  It indicates how well a linear best-fit

line relates two paired variables, such as the contact conductance and interface pressure.  A

value of 0 indicates that neither variable can be predicted by the other with a linear equation,

and values of 1 and –1 indicate a perfect linear relationships between the two variables
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(-1 indicating an inverse relationship, 1 indicting a direct relationship).  Pearson’s r is

defined for paired data (x, y) as:

€ 

R ≡
N xy∑ − x∑( ) y∑( )

n x2∑ − x∑( )2 
   

  n y2∑ − y∑( )2 
   

  
 
  

 
  

1
2

(4.1)

Pearson’s r is somewhat sensitive to extreme values in the data, and can be markedly

reduced by outliers.

INTERFACE FLUX EXPERIMENTAL RESULTS

Dimensional Results, Heat Flux Basis

Figures 4.1–4.4 present the thermal conductance data from the present study on an

interface heat flux basis.  Figure 4.1 presents the thermal contact conductance for the

experiments in the present study that involve the AL-6061 outer shell.  Similarly, Figure

4.2 presents results for the brass-360 outer shell, Figure 4.3 presents results for the

copper-102 outer shell, and Figure 4.4 presents results for the stainless steel-304 outer

shell.  All four figures show that the data are well behaved, as evidenced by the high values

of Pearson’s r for power-law fitted curves driven through each data set. 

It is not difficult to convince oneself that the all of the data should be able to be

described by a power law correlation, particularly in light of the clustering of data presented

in Figure 4.5.  In general, inner shells made of high conductivity materials have lower

conductance values than low conductivity inner shells.  While the power law curve fit

through the aggregate data has an adequate correlation between the interface heat flux and

the contact conductance, it should be possible to achieve a greater degree of correlation by

using other parameters in addition to the heat flux.  An analysis of the residuals of the

correlation and the data shows that 95% of the data falls within 27% of the power law curve
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Figure 4.1 – Thermal contact conductance as a function of interface heat flux for
aluminum outer shell experiments .
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Figure 4.2 – Thermal contact conductance as a function of interface heat flux for
brass outer shell experiments.
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Figure 4.3 – Thermal contact conductance as a function of interface heat flux for
copper outer shell experiments.
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Figure 4.4 – Thermal contact conductance as a function of interface heat flux for
stainless steel outer shell experiments.
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of the present experimental data.
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 fit through the data.  A comparison of initial and retest data is found in Figure 4.6 for four

cylindrical shell pairs.  The close agreement of the retest data with the initial test data

provides some assurance of the quality of the data.

Figure 4.7 presents a comparison of previously published data (from Figure 2.5)

with selected results of the present study.  The values from the present study are of nearly

the same magnitude and slope as those of previously published results, particularly those

of Madhusudana and Fletcher (1981) and Williams and Madhusudana (1970).

Differences may be accounted for by the surface finish and initial clearance, in addition to

the obvious enhancement effect of interstitial air.  The designation Fe indicates tests where

Armco Iron was used as a shell material.

Dimensionless Results, Heat Flux Basis

The method chosen to nondimensionalize the interface heat flux uses selected

thermophysical properties of the shells to correlate the slopes of the individual power law

curves for each shell combination.  Selecting the familiar dimensionless conductance as the

ordinate, the abscissa parameter was constructed of dimensionless groupings of interest,

similar to a Buckingham’s Pi analysis of the data.  The dimensionless heat flux was

constructed by dividing the interface heat flux by product of the interface temperature and

effective joint conductivity and multiplying the result by the interface radius.  The

coefficient of thermal expansion ratio (the appropriate value for the outer cylinder divided

by the value for the inner cylinder) was chosen because (from the analysis in Appendix D)

the interface pressure is expected to be dependent on this parameter.  The thermal

conductivity ratio, while important, did not have a high degree of correlation with the data

and is indirectly used in the effective conductivity and the exponent of the dimensionless

heat flux.  The interface separation is nondimensionalized by the interface radius.

Definitions of these parameters can be found in the Nomenclature section.  Surface
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 roughness and asperity slope are used to nondimensionalize the contact conductance, and

do not significantly improve the correlation when incorporated in the abscissa parameter.

The crude slope matching technique has limited effectiveness for the harder outer

shell materials (steel and brass), but the inclusion of a hardness parameter had a negligible

effect on the slope parameter ka*.  The negative exponent associated with the

dimensionless interface gap reflects the intuitive perception that the conductance will

increase as the gap decreases (or the interference increases).  Similarly, the positive

exponent of the ratio of coefficients of thermal expansion reflects the idea that the inner

cylindrical shell will expand into the outer cylindrical shell under the conditions of radially

outward heat flow.

Only a few published correlations that relate interface thermal state (of heat flux or

axial temperature distribution) to the contact conductance.  These are power law relations of

heat rate only, and are applicable to particular circumstances.  With this reasoning, no other

correlations or data are depicted in Figure 4.8.  All of the dimensionless data fall within

42% of the correlation, and 95% of the data are within 28% of the correlation. 

INTERFACE PRESSURE EXPERIMENTAL RESULTS

Dimensional Results, Pressure Basis

Dimensional conductance presented as a function of calculated pressure is

presented in Figure 4.9.  Initial observation reveals that several of the datasets have

extremely steep slopes.  Not unexpectedly, these material combinations have relatively

small mean interface gaps combined with large thermal conductivities in one or both shells

and low elastic modulus in one or both of the shells.  These factors lead to the conclusion

that while contact between the shells is established early, the contact pressure doesn’t

change much and the increase in conductance through the interface is chiefly a factor of the

increased interface heat flux
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Dimensionless Results, Pressure Basis

Figure 4.10 presents the familiar dimensionless contact conductance as a function

of the  dimensionless interface pressure for all test data.

In Figure 4.11, the dimensionless conductance-dimensionless interface pressure

data are compared to the models of Yovanovich (1981) and Lambert and Fletcher (1997). 

The Yovanovich model is valid for conforming surfaces, and has been at the heart

of many of the theoretical and experimental studies of cylindrical thermal contact

conductance.  It is not surprising that it over-predicts the conductance of the cylindrical

interfaces used in the present study since the cylindrical surfaces of interest are not

conforming. 

The model of Lambert and Fletcher (1997) was developed for surfaces with a

single macro-contact.  Simplifying assumptions used to implement the model include:

• Surface waviness can be expressed as the superposition of perpendicular sine

waves, which leads to tractable expressions relating the waviness amplitude,

slope of the macroscopic asperities, and radius of the macroscopic flux tube

(Appendix E),

• Vicker’s microhardness is an appropriate measure of the contact

microhardness, and

• Contact load is estimated as the average calculated contact pressure multiplied

by the area of the macroscopic flux tube.

Details of the model are more completely covered in Lambert and Fletcher (1997)

and Lambert (1995).

In general, high quality pressure results are not available for use in the construction

of a predictive model.  One of the assumptions in the thermoelastic method used to

calculate the interface pressure is that the shells are in perfect mechanical contact with each
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other and exert a uniformly distributed stress upon each other at the interface.  Since the

contact surfaces of the experimental cylindrical shells have discernable waviness, this is not

the case.  Strain gage results were not reliable because of several factors.  An unquantified

strain gage misalignment with the mid-plane and the axis of rotation, easily facilitated by

the small sizes of the gage rosettes and the outer cylindrical shells, may have introduced an

uncertainty in the reported strain.  Gage output voltage signals were somewhat noisy,

allowing the uncertainty due to signal variation to become the dominant uncertainty in the

measured output voltage.  Insufficient compensation for gage thermal response resulted in

calculated interface pressures that were either negative or much lower than expected.

Probable causes for the over-prediction of the conductance by the Lambert and

Fletcher model include insufficient knowledge of the surface waviness and uneven pressure

distribution.  The surface waviness is not isotropic, as evidenced by the surface

characterization results.  The longitudinal waviness and the circumferential waviness quite

different, and the effect of the cylindrical surface is probably not adequately modeled by

mapping the two wavinesses to a plane surface.  Further, the model presumes that the

macro-contacts are spherical, at least in the vicinity of the contact.  While the sinusoidal

surface model makes the relation between various parameters tractable, it has the effect of

enlarging the macroscopic flux-tube radius.  This is not a problem for single macro-

contacts where the actual size of the flux tube is measurable.  It is likely that the random

nature of the surfaces is manifested in there being a few macro-asperities that are higher

than others and bearing the load on a much smaller contact area.  This would result in a

greater constriction of the heat flow on the macro-scale, which would not be predicted by

the model.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

An experimental facility for the investigation of the thermal contact conductance of

cylindrical interfaces has been designed and fabricated.  Sixteen thermocouples and eight

analog channels were monitored, and two analog output channels were used to control

heaters and to automate valves. 

An experimental procedure for determining the variation of the contact conductance

of composite cylinders in a vacuum was developed and implemented.  While the outer

shells of the composite cylinders were instrumented with strain gages, data of insufficient

quality was obtained.  Repeat tests were performed to provide some measure of data

reliability.

A comparison of dimensional conductance results with previously published data

on both the heat flux and interface pressure bases were favorable.  Cylindrical thermal

contact conductance was of appropriate magnitude for both the heat flux and contact

pressure levels at the interface.  Repeat testing provided some assurance of data quality.

Data analysis shows that the calculated interface pressure is quite sensitive to uncertainties

in interface geometry and shell temperature distribution.  Dimensionless conductance and

dimensionless heat flux have very good correlation, while dimensionless conductance and

dimensionless interface pressure have relatively poor correlation (due to inadequate surface

characterization, large contact pressure uncertainties, and poor understanding of multiple

macro-contact conductance phenomenon).
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RECOMMENDATIONS

The present study has provided data for the contact conductance of a single

composite cylinder geometry with a variety of material combinations and somewhat more

limited variety of surface conditions.  Further investigation into cylindrical  thermal contact

conductance should take into account the following recommendations to foster a better

understanding of (and consequently better predictive models for) thermal contact

conductance of cylindrical interfaces.

Composite Cylinder Geometry

In future studies, it is recommended that the length of the composite cylinder

should be more then five times the average shell thickness, to ensure that end effects have

no influence on the temperature and strain (pressure) measurements done in the vicinity of

the centerline. 

It is suggested that different composite cylinder geometries be used in future

experiments, to study the effects of varying the shell thickness, interface radius, and ratio of

interface radius and nominal interface clearance (or interference).  Longer cylinders will

make interference fit cylindrical shells difficult to assemble and disassemble, but will

produce results more appropriate to conditions found in radial thermal control situations.

Some attempt should be made to transform the presently available contact

conductance models from the Cartesian coordinate system to a curvilinear coordinate

system. 

Contact Pressure

Techniques for directly measuring the pressure at the interface should be

investigated.  Such techniques should be able to withstand the temperatures and pressures

at the interface and should be relatively insensitive to ambient pressure in order to give valid

results for experiments in vacuum and other conditions.
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Equivalent Isotropic Waviness

The cylindrical shells have roughness and waviness in both the axial and

circumferential directions.  A more rigorous means of determining an equivalent isotropic

waviness should be investigated in order to use the simplified conductance models.

Radial Cylindrical Heat Channel

A different macroscopic constriction parameter should be developed for a non-

conforming surface model of the thermal contact conductance through cylindrical

interfaces.  Similar to parameters in use for nominally flat interfaces, the radial-cylindrical

constriction parameter should take into account the asymmetric nature of the heat flux

channel on either side of the interface.

Macrocontact Pressure Distribution

Due to the difference in waviness wavelengths and amplitudes in the longitudinal

and circumferential directions, it is unlikely that the macrocontact spots will be circular, and

the pressure within the macrocontact area can not be described as a unidirectional function

of Cartesian or polar coordinates.  The effect of the nominal cylindrical interface geometry

on macrocontact radius and pressure distribution should be investigated.

Multiple Contact Interaction

Greenwood (1966) describes the interaction between clusters of contacts based on

the spacing of the contacts and their sizes.  He describes the resistance to be a function of

the mean contact area and the Holm radius of the contacts.  With further consideration and

refinements, similarity arguments can be made for larger-scale contacts and a similar

interaction parameter can be constructed for the macroscale portion of the contact

resistance.   
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APPENDIX B

DATA ACQUISITION PROGRAM

The diagram in Figure B.1 illustrates the data acquisition and experiment control

algorithm used in the present study.  As explained in Chapter III, the control program

accepts input regarding the cylindrical shells used and the desired heater power settings

prior to execution.  Upon execution, the program initializes arrays for controlling the

heater, storing cylindrical shell geometry and temperature-independent thermophysical

properties, and calculating temperature-variable thermophysical properties.  For each heater

setting, the program write headers for the appropriate runtime and data files and initializes

arrays that are used for tracking the variables that are used to indicate steady state

conditions.  Next, the sensors are polled and data written to the runtime file.  The runtime

file serves as a backup of sensor data in the case of a power failure or in the case where it is

necessary to see the test conditions at a certain time.  Appropriate variable displays on the

screen are updated and runtime arrays are checked to see if steady state conditions have

been met.  Steady state is judged to have occurred if the variation of steady state indicating

variables is within the prescribed limits for a 30 minute operation period.  If steady state

has not been reached, the program wait one sample interval (approximately three minutes)

and re-enters the control loop at the point where sensors are polled. 

Once steady state has been reached, appropriate data are sent to the runtime file and

the output data file.  If the current heater setting is not the last one in the queue, then the

next heater setting is used in the program, which enters the control loop at the point
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START

INPUT: MATERIALS, POWER 
LEVELS, SAMPLE INTERVAL

INITIALIZE GLOBAL 
VARIABLES AND 

ARRAYS
FOR EACH HEATER 

POWER LEVEL

END LOOP

SET POWER TO ZERO END PROGRAM
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INITIALIZE RUNTIME 
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YES
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Figure B.1 – Flow chart of experiment control and data acquisition program.
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where the runtime arrays are initialized.  If the last heater setting in the queue has been

used, then the heater is powered down and the program execution is halted.

PSEUDOCODE OF LABVIEW DAQ PROGRAM OPERATION

Input on front panel
Cylinder materials,
Desired power levels,
Sample interval (default 3 min)

Operation - after program is started

Before all testing begins
Determine the number of power levels,
Set heater to off (safety feature),
Initialize sensor error counter = 0

For each power level

Initialize variables:
CTE values,
Conductivity values,
Cylinder temperatures,
Uncertainties,
Time-temperature-location array

Store 30 minutes worth of data for calculation for all radial
locations, preloaded to ensure that temperature variation
is greater than steady state limit for temperatures.

Geometry
Location of thermocouples and interfaces,
Labels for cylinder materials

Write runtime and data file headers;
Set heater power;

At every sample interval:

Log time;

While not in error condition, poll sensors:
Check for error reported by FieldPoint units,
Thermocouples - check for Over-Temperature, spurious

data,
Strain gage bridge output - check for spurious data,
Strain gage bridge input - check for spurious data.

If (Over-Temperature)
Report condition,
Shut off heater,
Shut down program.



104

Calculate temperature parameters (for each cylinder):
Average radial location temperature,
Slope of log temperature distribution,
Interface temperatures,
Weighted, mean cylinder temperatures,
Uncertainties.

Determine thermophysical properties at average temperatures;

Determine appropriate tolerance band;

Calculate interface heat flux;

Calculate thermal contact conductance;

Calculate corrected strain (for each gage array);

Test for steady state - all must be true
Temperature variation within tolerance for each location?
Variation of averaged interface heat rate within tolerance?
At least 30 min have elapsed since setting heater power?

Calculate temperature change since last poll time;

Set steady state indicator colors;

Output runtime variables:
Sample time,
Heat rate through inner cylinder,
Heat rate through outer cylinder,
Average inner cylinder temperature,
Average outer cylinder temperature,
Interface temperature,
Interface temperature difference,
Corrected strain,
Value of maximum temperature variation over last 30 min,
Averaged temperatures for each radial location,
Averaged interface heat flux

Output to screen:
Calculate temperatures at each location;
Output temperatures to temp-position graph;
Output to time-temperature chart:

High temperature,
Inner cylinder temp,
Interface temp,
Outer cylinder temp,
Low temperature,

Output strain and excitation voltage to time-strain chart;
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Wait for next interval;

At reaching steady state:
While not in error condition, poll sensors:

Check for error reported by FieldPoint units,
Thermocouples - check for Over-Temperature, spurious

data,
Strain gage bridge output - check for spurious data,
Strain gage bridge input - check for spurious data.

If (Over-Temperature):
Report condition,
Shut off heater,
Shut down program.

Calculate temperature parameters (for each cylinder):
Average radial location temperature,
Slope of log temperature distribution,
Interface temperatures,
Weighted, mean cylinder temperatures,
Uncertainties.

Determine thermophysical properties at average temperatures;

Determine appropriate tolerance band;

Calculate interface heat flux;

Calculate thermal contact conductance;

Calculate corrected strain (for each gage array);

Test for steady state - all must be true
Temperature variation within tolerance for each location?
Variation of averaged interface heat rate within tolerance?
At least 30 min have elapsed since setting heater power?

Calculate temperature change since last poll time;

Set steady state indicator colors;

Output runtime variables:
Sample time,
Heat rate through inner cylinder,
Heat rate through outer cylinder,
Average inner cylinder temperature,
Average outer cylinder temperature,
Interface temperature,
Interface temperature difference,
Corrected strain,
Value of maximum temperature variation over last 30 min,
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Averaged temperatures for each radial location,
Averaged interface heat flux

Output to screen:
Calculate temperatures at each location;
Output temperatures to temp-position graph;
Output to time-temperature chart:

High temperature,
Inner cylinder temp,
Interface temp,
Outer cylinder temp,
Low temperature,

Output strain and excitation voltage to time-strain chart;

Write to data file

Determine gage uncertainties;
Output elapsed time;
Output header for temperature distribution;
Output (for each thermocouple in each cylinder):

Temperature,
Temperature uncertainty,
Radial location

Output (for each gage array):
Gage header,
Gage voltage,
Gage uncertainty,
Corrected strain,
Strain uncertainty,
Excitation voltage,
Excitation voltage uncertainty.

Output (for each cylinder):
Average cylinder temperature,
Average thermal conductivity,
Average CTE.

Output:
Interface temperature,
Interface temperature difference,
Inner cylinder heat rate,
Outer cylinder heat rate,
Averaged interface heat rate,
Interface heat flux,
Thermal contact conductance.

Output (for each cylinder):
Raw thermocouple data,
Averaged temperatures,
Raw thermocouple uncertainties.
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Output:
Raw gage voltages,
Gage uncertainties,
Corrected strain,
Corrected strain error.

After all power levels have been used

Set heater to off (safety feature),
End Program;
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APPENDIX C

EXPERIMENTAL DATA

The symbols in the tables within this appendix have the following meanings and

units:

E' Hertzian Elastic Modulus, Pa

Ee Elastic Modulus, Pa

€ 

ζ Elastic Conformity Modulus of Clausing and Chao (1964)

h* Dimensionless Contact Conductance

hc Thermal Contact Conductance, W/m2K

He Effective Vickers Microhardness†, Pa

L* Dimensionless Load

mR slope of effective roughness

mW slope of effective longitudinal waviness

mq slope of effective circumferential waviness

P* dimensionless interface pressure

Pi Calculated interface pressure, Pa

€ 

ΨG
Plasticity Index of Greenwood (1967)

Q Nominal Heat Rate, W

Q" Calculated Interface Heat Flux, W/m2

Re Effective roughness, m

€ 

ξ Waviness Number of Thomas and Sayles (1964)

We effective longitudinal waviness, m

Wq effective circumferential waviness

                                                
† RMS average of microhardness, as measured according to ASTM Standard E 92-82

(ASTM, 1997).
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Table C.1 – Test Results for Composite Cylinder AA.

Inner Cylinder: Aluminum 6061

Outer Cylinder: Aluminum 6061

E', Pa 3.939E+10 Re, m 6.909E-05

Ee, Pa 7.000E+10 mR 1.484E-01

He, Pa 1.148E+09 We, m 6.097E-05

mW 2.236E-03

€ 

ζ 7.533E+02 Wθ, m 1.975E-05

€ 

ξ 4.205E+03 mθ 2.384E-03

€ 

ΨG
5.091E+00

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

3.000E+02 1.212E+04 5.339E+07 4.649E-02 7.587E-02 2.521E+02 6.973E-04

5.000E+02 1.836E+04 5.458E+07 4.752E-02 7.756E-02 3.794E+02 1.054E-03

6.000E+02 2.169E+04 5.508E+07 4.796E-02 7.827E-02 4.503E+02 1.253E-03

7.000E+02 2.445E+04 5.580E+07 4.859E-02 7.929E-02 5.093E+02 1.419E-03

7.500E+02 2.567E+04 5.588E+07 4.866E-02 7.941E-02 5.354E+02 1.492E-03

8.000E+02 2.701E+04 5.654E+07 4.923E-02 8.034E-02 5.633E+02 1.571E-03

8.500E+02 2.900E+04 5.641E+07 4.912E-02 8.017E-02 6.060E+02 1.691E-03

9.000E+02 3.042E+04 5.695E+07 4.959E-02 8.093E-02 6.372E+02 1.779E-03

9.500E+02 3.202E+04 5.680E+07 4.946E-02 8.071E-02 6.730E+02 1.881E-03

1.000E+03 3.344E+04 5.730E+07 4.990E-02 8.142E-02 7.040E+02 1.968E-03

5.010E+02 1.614E+04 5.474E+07 4.767E-02 7.779E-02 3.293E+02 9.145E-04
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Table C.2 – Test Results for Composite Cylinder AB.

Inner Cylinder: Aluminum 6061

Outer Cylinder: Brass 360

E', Pa 4.838E+10 Re, m 7.607E-05

Ee, Pa 8.556E+10 mR 1.544E-01

He, Pa 1.148E+09 We, m 6.311E-05

mW 2.236E-03

€ 

ζ 6.220E+02 Wθ, m 1.831E-05

€ 

ξ 3.456E+03 mθ 2.385E-03

€ 

ΨG
6.504E+00

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

5.000E+02 3.052E+04 5.481E+07 4.773E-02 5.882E-02 8.537E+02 3.432E-03

7.500E+02 4.050E+04 6.123E+07 5.332E-02 6.571E-02 1.151E+03 4.618E-03

8.500E+02 4.481E+04 6.363E+07 5.540E-02 6.828E-02 1.285E+03 5.151E-03

9.000E+02 4.692E+04 6.506E+07 5.665E-02 6.982E-02 1.349E+03 5.404E-03

9.500E+02 4.919E+04 6.695E+07 5.830E-02 7.184E-02 1.661E+03 6.644E-03

1.000E+03 5.132E+04 6.798E+07 5.920E-02 7.295E-02 1.731E+03 6.921E-03

6.000E+02 3.518E+04 5.709E+07 4.971E-02 6.126E-02 9.988E+02 4.012E-03
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Table C.3 – Test Results for Composite Cylinder AC.

Inner Cylinder: Aluminum 6061

Outer Cylinder: Copper 102

E', Pa 4.838E+10 Re, m 4.826E-05

Ee, Pa 8.556E+10 mR 1.991E-01

He, Pa 1.148E+09 We, m 6.015E-05

mW 1.414E-03

€ 

ζ 7.922E+02 Wθ, m 1.822E-05

€ 

ξ 4.401E+03 mθ 2.385E-03

€ 

ΨG
8.388E+00

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

3.000E+02 4.683E+03 9.544E+07 8.311E-02 3.662E-01 8.805E+01 9.115E-05

5.000E+02 6.865E+03 1.039E+08 9.047E-02 3.986E-01 1.238E+02 1.285E-04

6.000E+02 7.782E+03 1.076E+08 9.372E-02 4.129E-01 1.383E+02 1.437E-04

7.000E+02 8.513E+03 1.110E+08 9.662E-02 4.257E-01 1.496E+02 1.557E-04

7.500E+02 9.436E+03 1.132E+08 9.853E-02 4.341E-01 1.649E+02 1.716E-04

8.000E+02 1.020E+04 1.148E+08 1.000E-01 4.406E-01 1.773E+02 1.847E-04

8.500E+02 1.202E+04 1.163E+08 1.013E-01 4.463E-01 2.082E+02 2.170E-04

9.000E+02 1.178E+04 1.180E+08 1.028E-01 4.528E-01 2.029E+02 2.115E-04

9.500E+02 1.349E+04 1.194E+08 1.040E-01 4.581E-01 2.314E+02 2.413E-04

1.000E+03 1.408E+04 1.212E+08 1.055E-01 4.649E-01 2.404E+02 2.508E-04

5.010E+02 3.450E+03 9.299E+07 8.098E-02 3.568E-01 7.104E+01 7.354E-05
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Table C.4 – Test Results for Composite Cylinder AS.

Inner Cylinder: Aluminum 6061

Outer Cylinder: Stainless Steel 304

E', Pa 5.750E+10 Re, m 7.159E-05

Ee, Pa 1.027E+11 mR 1.613E-01

He, Pa 1.148E+09 We, m 6.010E-05

mW 2.236E-03

€ 

ζ 1.570E+03 Wθ, m 1.823E-05

€ 

ξ 8.811E+03 mθ 2.384E-03

€ 

ΨG
8.079E+00

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

3.000E+02 1.513E+04 1.073E+08 9.347E-02 9.628E-02 4.189E+02 7.149E-03

5.000E+02 2.188E+04 1.355E+08 1.180E-01 1.215E-01 6.106E+02 1.032E-02

6.000E+02 2.998E+04 1.594E+08 1.388E-01 1.430E-01 8.051E+02 1.363E-02

7.000E+02 3.363E+04 1.652E+08 1.439E-01 1.482E-01 9.002E+02 1.521E-02

7.500E+02 3.541E+04 1.711E+08 1.490E-01 1.535E-01 9.426E+02 1.591E-02

8.000E+02 3.689E+04 1.779E+08 1.549E-01 1.596E-01 9.755E+02 1.646E-02

8.500E+02 3.841E+04 1.848E+08 1.609E-01 1.658E-01 1.010E+03 1.704E-02

9.000E+02 3.986E+04 1.930E+08 1.680E-01 1.731E-01 1.036E+03 1.746E-02

9.500E+02 4.135E+04 1.990E+08 1.733E-01 1.785E-01 1.073E+03 1.808E-02

1.000E+03 4.259E+04 1.951E+08 1.699E-01 1.750E-01 1.087E+03 1.832E-02

5.010E+02 2.415E+04 1.356E+08 1.181E-01 1.216E-01 6.303E+02 1.072E-02
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Table C.5 – Test Results for Composite Cylinder BA.

Inner Cylinder: Brass 360

Outer Cylinder: Aluminum 6061

E', Pa 4.838E+10 Re, m 1.053E-04

Ee, Pa 8.556E+10 mR 2.885E-01

He, Pa 1.079E+09 We, m 3.494E-05

mW 6.633E-03

€ 

ζ 5.120E+03 Wθ, m 1.069E-05

€ 

ξ 2.844E+04 mθ 3.658E-04

€ 

ΨG
1.294E+01

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

5.000E+02 1.446E+04 5.003E+07 4.637E-02 1.979E-03 2.776E+02 7.962E-04

6.000E+02 2.138E+04 5.070E+07 4.699E-02 2.005E-03 4.138E+02 1.187E-03

7.000E+02 2.598E+04 5.097E+07 4.724E-02 2.016E-03 5.067E+02 1.453E-03

7.500E+02 2.857E+04 5.134E+07 4.758E-02 2.030E-03 5.595E+02 1.604E-03

8.000E+02 3.083E+04 5.146E+07 4.770E-02 2.035E-03 6.057E+02 1.736E-03

8.500E+02 3.289E+04 5.185E+07 4.806E-02 2.051E-03 6.491E+02 1.861E-03

9.000E+02 3.520E+04 5.199E+07 4.819E-02 2.056E-03 6.968E+02 1.997E-03

9.500E+02 3.782E+04 5.249E+07 4.865E-02 2.076E-03 7.523E+02 2.155E-03

1.000E+03 3.988E+04 5.250E+07 4.866E-02 2.077E-03 7.961E+02 2.280E-03

5.010E+02 1.673E+04 5.019E+07 4.652E-02 1.985E-03 3.206E+02 9.195E-04
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Table C.6 – Test Results for Composite Cylinder BB.

Inner Cylinder: Brass 360

Outer Cylinder: Brass 360

E', Pa 6.268E+10 Re, m 1.100E-04

Ee, Pa 1.100E+11 mR 2.917E-01

He, Pa 1.079E+09 We, m 3.856E-05

mW 6.633E-03

€ 

ζ 4.484E+03 Wθ, m 7.726E-06

€ 

ξ 2.472E+04 mθ 3.756E-04

€ 

ΨG
1.694E+01

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

2.000E+02 6.359E+03 4.828E+07 4.475E-02 1.681E-03 1.624E+02 6.213E-04

4.000E+02 1.957E+04 6.111E+07 5.663E-02 2.127E-03 4.596E+02 1.749E-03

5.000E+02 2.554E+04 6.331E+07 5.868E-02 2.204E-03 5.949E+02 2.260E-03

6.500E+02 3.388E+04 7.271E+07 6.739E-02 2.531E-03 7.324E+02 2.772E-03

7.500E+02 3.879E+04 7.441E+07 6.896E-02 2.590E-03 8.413E+02 3.191E-03

8.000E+02 3.796E+04 7.817E+07 7.245E-02 2.721E-03 8.565E+02 3.232E-03

8.500E+02 4.506E+04 7.848E+07 7.273E-02 2.732E-03 1.017E+03 3.837E-03

9.000E+02 4.779E+04 7.581E+07 7.026E-02 2.639E-03 1.124E+03 4.243E-03

9.500E+02 5.048E+04 7.728E+07 7.163E-02 2.690E-03 1.183E+03 4.461E-03

1.000E+03 5.311E+04 7.900E+07 7.322E-02 2.750E-03 1.243E+03 4.682E-03

5.100E+02 2.434E+04 6.443E+07 5.971E-02 2.243E-03 5.511E+02 2.094E-03
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Table C.7 – Test Results for Composite Cylinder BC.

Inner Cylinder: Brass 360

Outer Cylinder: Copper 102

E', Pa 6.268E+10 Re, m 9.295E-05

Ee, Pa 1.100E+11 mR 3.176E-01

He, Pa 1.079E+09 We, m 3.350E-05

mW 6.403E-03

€ 

ζ 5.888E+03 Wθ, m 7.518E-06

€ 

ξ 3.246E+04 mθ 3.738E-04

€ 

ΨG
1.845E+01

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

3.000E+02 1.384E+04 6.776E+07 6.281E-02 2.417E-03 3.736E+02 6.811E-04

5.000E+02 2.397E+04 6.963E+07 6.453E-02 2.484E-03 6.560E+02 1.192E-03

6.000E+02 2.850E+04 7.102E+07 6.582E-02 2.534E-03 7.799E+02 1.416E-03

7.000E+02 3.276E+04 7.199E+07 6.672E-02 2.568E-03 9.017E+02 1.635E-03

7.500E+02 3.415E+04 7.274E+07 6.742E-02 2.595E-03 9.381E+02 1.700E-03

8.000E+02 3.718E+04 7.315E+07 6.780E-02 2.610E-03 1.022E+03 1.851E-03

8.500E+02 3.877E+04 7.369E+07 6.829E-02 2.629E-03 1.066E+03 1.929E-03

9.000E+02 3.993E+04 7.410E+07 6.868E-02 2.644E-03 1.092E+03 1.976E-03

9.500E+02 4.146E+04 7.497E+07 6.948E-02 2.675E-03 1.129E+03 2.041E-03

1.000E+03 4.393E+04 7.546E+07 6.994E-02 2.692E-03 1.193E+03 2.155E-03

5.010E+02 2.525E+04 6.944E+07 6.436E-02 2.477E-03 7.031E+02 1.278E-03
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Table C.8 – Test Results for Composite Cylinder BS.

Inner Cylinder: Brass 360

Outer Cylinder: Stainless Steel 304

E', Pa 7.889E+10 Re, m 1.069E-04

Ee, Pa 1.401E+11 mR 2.954E-01

He, Pa 1.079E+09 We, m 3.341E-05

mW 6.633E-03

€ 

ζ 9.551E+03 Wθ, m 7.533E-06

€ 

ξ 5.330E+04 mθ 3.686E-04

€ 

ΨG
2.160E+01

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

3.000E+02 1.508E+04 9.569E+07 8.868E-02 2.072E-03 4.151E+02 6.124E-03

5.000E+02 2.352E+04 1.205E+08 1.116E-01 2.609E-03 7.061E+02 1.021E-02

6.000E+02 2.780E+04 1.320E+08 1.224E-01 2.860E-03 8.076E+02 1.164E-02

7.000E+02 3.441E+04 1.451E+08 1.345E-01 3.142E-03 9.781E+02 1.411E-02

7.500E+02 3.596E+04 1.495E+08 1.386E-01 3.238E-03 1.001E+03 1.443E-02

8.000E+02 3.767E+04 1.494E+08 1.385E-01 3.237E-03 1.022E+03 1.471E-02

8.500E+02 4.001E+04 1.559E+08 1.445E-01 3.377E-03 1.157E+03 1.665E-02

9.000E+02 4.273E+04 1.621E+08 1.503E-01 3.511E-03 1.211E+03 1.740E-02

9.500E+02 4.464E+04 1.672E+08 1.549E-01 3.620E-03 1.265E+03 1.817E-02

1.000E+03 4.826E+04 1.722E+08 1.596E-01 3.731E-03 1.367E+03 1.962E-02

5.010E+02 2.337E+04 1.216E+08 1.127E-01 2.633E-03 6.940E+02 1.003E-02
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Table C.9 – Test Results for Composite Cylinder CA.

Inner Cylinder: Copper 102

Outer Cylinder: Aluminum 6061

E', Pa 4.838E+10 Re, m 8.835E-05

Ee, Pa 8.556E+10 mR 1.796E-01

He, Pa 8.345E+08 We, m 9.617E-05

mW 2.828E-03

€ 

ζ 3.368E+02 Wθ, m 1.070E-05

€ 

ξ 1.871E+03 mθ 2.782E-04

€ 

ΨG
1.041E+01

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

3.000E+02 9.766E+03 4.938E+07 5.917E-02 6.912E-02 1.958E+02 4.075E-04

5.000E+02 1.222E+04 5.503E+07 6.594E-02 7.702E-02 2.250E+02 4.710E-04

6.000E+02 1.723E+04 5.803E+07 6.954E-02 8.123E-02 3.054E+02 6.409E-04

7.000E+02 1.600E+04 6.045E+07 7.244E-02 8.461E-02 2.750E+02 5.781E-04

7.500E+02 1.731E+04 6.139E+07 7.356E-02 8.593E-02 2.942E+02 6.189E-04

8.000E+02 1.894E+04 6.226E+07 7.461E-02 8.715E-02 3.187E+02 6.710E-04

8.500E+02 1.978E+04 6.311E+07 7.562E-02 8.833E-02 3.298E+02 6.947E-04

9.000E+02 2.042E+04 6.422E+07 7.695E-02 8.988E-02 3.371E+02 7.106E-04

9.500E+02 2.146E+04 6.504E+07 7.793E-02 9.103E-02 3.503E+02 7.389E-04

1.000E+03 2.211E+04 6.622E+07 7.935E-02 9.269E-02 3.565E+02 7.525E-04

5.010E+02 1.377E+04 5.493E+07 6.582E-02 7.689E-02 2.512E+02 5.256E-04
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Table C.10 – Test Results for Composite Cylinder CB.

Inner Cylinder: Copper 102

Outer Cylinder: Brass 360

E', Pa 6.268E+10 Re, m 9.391E-05

Ee, Pa 1.100E+11 mR 1.846E-01

He, Pa 8.345E+08 We, m 9.754E-05

mW 2.828E-03

€ 

ζ 4.534E+02 Wθ, m 7.729E-06

€ 

ξ 2.500E+03 mθ 2.909E-04

€ 

ΨG
1.386E+01

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

4.000E+02 1.633E+04 8.892E+07 1.066E-01 9.019E-02 2.949E+02 9.706E-04

6.500E+02 2.522E+04 1.061E+08 1.271E-01 1.076E-01 4.090E+02 1.344E-03

8.500E+02 3.178E+04 1.197E+08 1.434E-01 1.214E-01 4.779E+02 1.567E-03

9.500E+02 3.487E+04 1.254E+08 1.502E-01 1.272E-01 5.057E+02 1.656E-03

1.000E+03 3.670E+04 1.285E+08 1.540E-01 1.303E-01 5.233E+02 1.713E-03

9.000E+02 3.360E+04 1.228E+08 1.471E-01 1.245E-01 4.957E+02 1.625E-03

7.500E+02 2.825E+04 1.133E+08 1.357E-01 1.149E-01 4.337E+02 1.424E-03

4.100E+02 1.588E+04 9.132E+07 1.094E-01 9.262E-02 2.786E+02 9.171E-04

2.000E+02 9.170E+03 7.567E+07 9.068E-02 7.675E-02 1.829E+02 6.019E-04

5.010E+02 2.381E+04 2.596E+05 3.111E-04 2.633E-04 3.901E+02 1.285E-03
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Table C.11 – Test Results for Composite Cylinder CC.

Inner Cylinder: Copper 102

Outer Cylinder: Copper 102

E', Pa 6.268E+10 Re, m 7.321E-05

Ee, Pa 1.100E+11 mR 2.233E-01

He, Pa 8.345E+08 We, m 9.565E-05

mW 2.236E-03

€ 

ζ 2.944E+02 Wθ, m 7.522E-06

€ 

ξ 1.623E+03 mθ 2.886E-04

€ 

ΨG
1.677E+01

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

6.000E+02 9.615E+03 8.261E+07 9.898E-02 1.665E-01 2.069E+02 1.731E-04

7.000E+02 1.103E+04 8.421E+07 1.009E-01 1.697E-01 2.352E+02 1.971E-04

7.500E+02 1.178E+04 8.509E+07 1.020E-01 1.715E-01 2.501E+02 2.096E-04

8.000E+02 1.290E+04 8.533E+07 1.022E-01 1.720E-01 2.734E+02 2.294E-04

8.500E+02 1.393E+04 8.639E+07 1.035E-01 1.741E-01 2.941E+02 2.469E-04

9.000E+02 1.491E+04 8.723E+07 1.045E-01 1.758E-01 3.138E+02 2.636E-04

9.500E+02 1.608E+04 8.816E+07 1.056E-01 1.777E-01 3.364E+02 2.828E-04

1.000E+03 1.709E+04 8.911E+07 1.068E-01 1.796E-01 3.557E+02 2.992E-04

5.010E+02 7.479E+03 8.195E+07 9.820E-02 1.652E-01 1.605E+02 1.342E-04
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Table C.12 – Test Results for Composite Cylinder CS.

Inner Cylinder: Copper 102

Outer Cylinder: Stainless Steel 304

E', Pa 7.889E+10 Re, m 9.031E-05

Ee, Pa 1.401E+11 mR 1.904E-01

He, Pa 8.345E+08 We, m 9.562E-05

mW 2.828E-03

€ 

ζ 7.124E+02 Wθ, m 7.537E-06

€ 

ξ 3.975E+03 mθ 2.818E-04

€ 

ΨG
1.800E+01

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

4.000E+02 2.069E+04 1.239E+08 1.485E-01 1.017E-01 5.051E+02 8.827E-03

5.000E+02 2.819E+04 1.642E+08 1.967E-01 1.348E-01 6.513E+02 1.128E-02

6.000E+02 3.053E+04 1.833E+08 2.196E-01 1.505E-01 7.103E+02 1.224E-02

7.000E+02 3.785E+04 2.074E+08 2.486E-01 1.703E-01 7.989E+02 1.374E-02

7.500E+02 3.973E+04 2.157E+08 2.585E-01 1.771E-01 8.156E+02 1.402E-02

8.500E+02 4.260E+04 2.334E+08 2.797E-01 1.916E-01 8.390E+02 1.441E-02

8.000E+02 4.158E+04 2.252E+08 2.699E-01 1.849E-01 8.346E+02 1.434E-02

9.000E+02 4.407E+04 2.431E+08 2.913E-01 1.996E-01 8.425E+02 1.447E-02

9.500E+02 4.647E+04 2.534E+08 3.037E-01 2.081E-01 8.655E+02 1.486E-02

1.000E+03 4.820E+04 2.623E+08 3.143E-01 2.154E-01 8.727E+02 1.498E-02

5.010E+02 2.150E+04 1.343E+08 1.609E-01 1.103E-01 5.423E+02 9.425E-03
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Table C.13 – Test Results for Composite Cylinder SA.

Inner Cylinder: Stainless Steel 304

Outer Cylinder: Aluminum 6061

E', Pa 5.750E+10 Re, m 7.736E-05

Ee, Pa 1.027E+11 mR 1.557E-01

He, Pa 2.576E+09 We, m 3.771E-05

mW 2.828E-03

€ 

ζ 1.130E+03 Wθ, m 8.807E-06

€ 

ξ 6.341E+03 mθ 1.887E-04

€ 

ΨG
3.477E+00

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

3.000E+02 1.556E+04 3.669E+07 1.424E-02 8.107E-03 4.784E+02 9.030E-03

5.000E+02 2.383E+04 3.628E+07 1.409E-02 8.017E-03 8.422E+02 1.591E-02

6.000E+02 2.790E+04 3.741E+07 1.452E-02 8.266E-03 1.019E+03 1.928E-02

7.000E+02 3.077E+04 3.694E+07 1.434E-02 8.164E-03 1.162E+03 2.199E-02

7.500E+02 3.288E+04 3.676E+07 1.427E-02 8.124E-03 1.258E+03 2.381E-02

8.000E+02 3.419E+04 3.748E+07 1.455E-02 8.283E-03 1.327E+03 2.511E-02

8.500E+02 3.603E+04 3.732E+07 1.449E-02 8.248E-03 1.421E+03 2.689E-02

9.000E+02 3.790E+04 3.741E+07 1.452E-02 8.267E-03 1.514E+03 2.865E-02

9.500E+02 3.979E+04 3.796E+07 1.474E-02 8.388E-03 1.610E+03 3.048E-02

1.000E+03 4.165E+04 3.775E+07 1.465E-02 8.341E-03 1.714E+03 3.242E-02

5.010E+02 2.303E+04 3.654E+07 1.419E-02 8.075E-03 8.154E+02 1.541E-02

9.990E+02 4.115E+04 3.762E+07 1.461E-02 8.314E-03 1.709E+03 3.234E-02

4.990E+02 2.253E+04 3.686E+07 1.431E-02 8.146E-03 7.976E+02 1.507E-02
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Table C.14 – Test Results for Composite Cylinder SB.

Inner Cylinder: Stainless Steel 304

Outer Cylinder: Brass 360

E', Pa 7.889E+10 Re, m 8.366E-05

Ee, Pa 1.401E+11 mR 1.614E-01

He, Pa 2.576E+09 We, m 4.108E-05

mW 2.828E-03

€ 

ζ 1.859E+03 Wθ, m 4.783E-06

€ 

ξ 1.038E+04 mθ 2.071E-04

€ 

ΨG
4.944E+00

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

3.000E+02 1.329E+04 8.301E+07 3.223E-02 1.411E-02 2.869E+02 5.991E-03

6.000E+02 3.011E+04 9.722E+07 3.775E-02 1.653E-02 6.547E+02 1.361E-02

7.500E+02 3.659E+04 1.043E+08 4.049E-02 1.773E-02 7.909E+02 1.637E-02

8.500E+02 4.067E+04 1.076E+08 4.175E-02 1.828E-02 8.757E+02 1.807E-02

9.500E+02 4.479E+04 1.128E+08 4.379E-02 1.917E-02 9.598E+02 1.972E-02

1.000E+03 4.695E+04 1.156E+08 4.487E-02 1.965E-02 1.002E+03 2.053E-02

9.000E+02 4.281E+04 1.100E+08 4.269E-02 1.869E-02 9.292E+02 1.913E-02

8.000E+02 3.840E+04 1.051E+08 4.079E-02 1.786E-02 8.431E+02 1.743E-02

6.010E+02 3.057E+04 9.722E+07 3.774E-02 1.653E-02 6.794E+02 1.414E-02

4.000E+02 2.186E+04 8.656E+07 3.361E-02 1.471E-02 4.942E+02 1.032E-02

2.000E+02 9.475E+03 7.706E+07 2.992E-02 1.310E-02 2.131E+02 4.449E-03
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Table C.15 – Test Results for Composite Cylinder SC.

Inner Cylinder: Stainless Steel 304

Outer Cylinder: Copper 102

E', Pa 7.889E+10 Re, m 5.950E-05

Ee, Pa 1.401E+11 mR 2.046E-01

He, Pa 2.576E+09 We, m 3.638E-05

mW 2.236E-03

€ 

ζ 1.445E+03 Wθ, m 4.441-06

€ 

ξ 8.063E+03 mθ 2.039E-04

€ 

ΨG
6.267E+00

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

3.000E+02 6.048E+03 1.757E+05 6.820E-05 5.555E-05 1.845E+02 1.944E-03

5.000E+02 7.184E+03 7.570E+07 2.939E-02 2.394E-02 2.226E+02 2.349E-03

6.000E+02 9.996E+03 7.595E+07 2.948E-02 2.401E-02 3.204E+02 3.383E-03

7.000E+02 1.223E+04 7.660E+07 2.974E-02 2.422E-02 4.038E+02 4.267E-03

7.500E+02 1.113E+04 7.670E+07 2.978E-02 2.425E-02 3.730E+02 3.942E-03

8.000E+02 1.181E+04 7.691E+07 2.986E-02 2.432E-02 4.022E+02 4.253E-03

8.500E+02 1.285E+04 7.710E+07 2.993E-02 2.438E-02 4.443E+02 4.698E-03

9.000E+02 1.316E+04 7.706E+07 2.992E-02 2.437E-02 4.626E+02 4.892E-03

9.500E+02 1.410E+04 7.755E+07 3.011E-02 2.452E-02 5.037E+02 5.328E-03

1.000E+03 1.460E+04 7.766E+07 3.015E-02 2.456E-02 5.305E+02 5.612E-03

5.010E+02 7.618E+03 7.527E+07 2.922E-02 2.380E-02 2.442E+02 2.576E-03

3.010E+02 5.409E+03 7.482E+07 2.905E-02 2.366E-02 1.613E+02 1.700E-03
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Table C.16 – Test Results for Composite Cylinder SS.

Inner Cylinder: Stainless Steel 304

Outer Cylinder: Stainless Steel 304

E', Pa 1.064E+11 Re, m 7.960E-05

Ee, Pa 1.930E+11 mR 1.681E-01

He, Pa 2.576E+09 We, m 3.629E-05

mW 2.828E-03

€ 

ζ 3.836E+03 Wθ, m 4.466E-06

€ 

ξ 2.186E+04 mθ 1.941E-04

€ 

ΨG
6.944E+00

Q, W Q", W/m2 Pi, Pa P* L* hc, W/m2K h*

2.000E+02 8.645E+03 1.011E+08 3.926E-02 1.072E-02 2.550E+02 8.770E-03

4.000E+02 1.573E+04 1.495E+08 5.805E-02 1.584E-02 3.825E+02 1.281E-02

5.000E+02 1.966E+04 1.886E+08 7.321E-02 1.998E-02 4.679E+02 1.549E-02

6.000E+02 2.524E+04 2.155E+08 8.368E-02 2.284E-02 5.734E+02 1.877E-02

6.500E+02 2.792E+04 2.239E+08 8.691E-02 2.372E-02 6.141E+02 2.014E-02

7.000E+02 2.783E+04 2.211E+08 8.585E-02 2.343E-02 6.288E+02 2.061E-02

7.500E+02 2.943E+04 2.332E+08 9.053E-02 2.471E-02 6.483E+02 2.116E-02

8.000E+02 3.038E+04 2.446E+08 9.497E-02 2.592E-02 6.365E+02 2.069E-02

8.500E+02 3.228E+04 2.541E+08 9.864E-02 2.692E-02 6.689E+02 2.165E-02

9.000E+02 4.029E+04 2.873E+08 1.115E-01 3.044E-02 8.189E+02 2.642E-02

9.500E+02 4.196E+04 2.759E+08 1.071E-01 2.923E-02 8.207E+02 2.642E-02

1.000E+03 4.332E+04 2.877E+08 1.117E-01 3.049E-02 8.149E+02 2.616E-02

5.010E+02 2.046E+04 1.785E+08 6.928E-02 1.891E-02 5.029E+02 1.677E-02
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APPENDIX D

CALCULATION OF INTERFACE PRESSURE

One goal of this analysis is to use data collected in the experimental part of the

present study to determine the contact pressures experienced by the compound cylindrical

shells.  Another goal is to develop a methodology to estimate the pressure experienced by

other compound cylindrical shells from published data.  An estimate of the interface

pressure must be obtained so that the results of this study may be compared with

previously published results (both flat and cylindrical thermal contact conductance) on the

same basis.  Due to the difficulty in placing reliable pressure measurement sensors at the

interface without disrupting the flow of heat, we turn to the mathematical theory of elasticity

in order to determine the interface pressure – specifically the theories associated with the

Lamé problem.  Through superposition, we can use the separate solutions for the thermally

induced stress and the mechanically induced stress in conjunction with the experimental

data and the initial geometry to determine the pressure exerted at the interface.

The material in this appendix is developed from material by Kozik (1997), Popov

(1978), Boley (1997), and Timoshenko and Goodier (1951).

SUPERPOSITION OF STRESSES

The equations and boundary conditions for the stresses and displacements within

the compound cylinder are linear.  We may then divide the problem into two pieces, solve

them separately, and calculate the displacements and stresses to be the sum of the two

solutions.  Posing this in mathematical terms:

€ 

σ total = σmechanical+ σ thermal

u r( )
total

= u r( )
mechanical

+ u r( )
thermal

(D.1)
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This analysis will first address the mechanical part of the problem, including the

effects of the initial stress at the interface.  The cases of negligible and full longitudinal

restraint at the interface will be considered.  Later, the thermal part of the problem will be

addressed.  The solutions for the two parts will be used together to obtain the solutions for

the total problem.

MECHANICAL EFFECTS

As noted in Chapter IV, the cylindrical shells used in this study are thick-walled

and have an initial clearance fit.  The cylindrical shells are unrestrained, except by each

other.  Each cylindrical shell is instrumented with thermocouples at different radial

locations, so the temperature distribution within each shell can be determined.  Additionally,

the outer shells are instrumented with 90° strain gage rosettes placed at the mid-plane.  It is

assumed that the stresses and the thermal distribution are axi-symmetric.  It is not

unreasonable to assume that the temperature distribution in our experimental facility is not

going to be uniform.  Instead, the radial temperature distribution due to the steady

conduction is likely to be of the form:

 

€ 

T r( ) =
T ri( ) − T ro( )

ln ri ro( )
ln r ro( ) + T ro( )

=
T ri( ) − T ro( )

ln ri ro( )
ln r( ) − ln ro( )[ ] + T ro( )

=
T ri( ) − T ro( )

ln ri ro( )
 

 
 
 

 

 
 
 
ln r( ) + T ro( ) −

T ri( ) − T ro( )
ln ri ro( )

ln ro( )
 

 
 
 

 

 
 
 

= m ln r( ) + b (D.2)

The axial temperature distribution should be uniform, with some possible variation near the

ends.
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The analysis of the compound cylinder begins with the analysis of a single

cylindrical shell.  From static equilibrium, the sum of forces upon an infinitesimal element

of the cylinder must be zero.  Following Popov (1978) and defining u(r) to be the radial

displacement of any radial location, the resulting differential equation can be expressed in

terms of radial displacements:

€ 

d2u

dr2 +
1

r

du

dr
−

u

r2 = 0 (D.3)

The solution of this differential equation is of the form:

€ 

u r( ) = A1r +
A2

r
(D.4)

where constants A1 and A2 are determined by the boundary conditions.  The radial and

tangential strains are defined in terms of u(r):

€ 

ε r ≡
du

dr
= A1 −

A2

r2 (D.5)

€ 

εθ ≡
u

r
= A1 +

A2

r2 (D.6)

From elastic theory, the deformation of a body is related to the stresses applied to

that body.  These relations are specialized forms of Hooke’s law.  In the case of cylindrical

shells these relations are, for a body experiencing mechanical stresses alone:

€ 

εr =
1

E
σ r − νσθ − νσz( )

εθ =
1

E
−ν σ r + σθ − ν σz( )

εz = 1
E

−ν σ r − νσθ + σz( )

(D.7)
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This last relation is further refined by the type of longitudinal boundary condition.  For the

case of a cylinder with axially restrained deformation, εz = 0.  This case is termed plane

strain.  Similarly, the formulations for the stresses are obtained from elastic theory:

€ 

σ r = E
1+ ν( ) 1− 2ν( )

1− ν( )εr + νεθ + 1− ν( )εz[ ]

σθ =
E

1+ ν( ) 1−2ν( )
νε r + 1− ν( )εθ + 1− ν( )εz[ ]

σz = E
1+ ν( ) 1− 2ν( )

1− ν( )εr + 1− ν( )εθ + ν εz[ ]

(D.8)

Analogously, in the case of plane stress, no stress is exerted upon the cylinder in the axial

direction (e.g. as in a thin, annular disk).  These two cases give rise to two different

solutions to the differential equation expressed in Equation D.3 – however, in either case,

the relations for the radial and tangential stresses are in the forms:

Table D.1 – Summary of Constants for Mechanical Problem.

Plane stress Plane strain

A1

€ 

1− ν( )
E

Piri
2 −Poro

2

ro
2 − ri

2

€ 

1+ ν( ) 1−2ν( )
E

Piri
2 −Poro

2

ro
2 − ri

2

A 2

€ 

1+ ν
E

Pi −Po( )ri
2ro

2

ro
2 − ri

2

€ 

1+ ν
E

Pi −Po( )ri
2ro

2

ro
2 − ri

2

C1

€ 

Piri
2 −Poro

2

ro
2 − ri

2

€ 

1− ν( )
1+ ν( ) 1−2ν( )

Piri
2 −Poro

2

ro
2 − ri

2

C2

€ 

Pi −Po( )ri2ro
2

ro
2 − ri

2

€ 

1

1−2ν( )
Pi − Po( )ri

2ro
2

ro
2 − ri

2

1

r2

z

€ 

εz = ν
E

σ r + σθ( )

= 2ν
E

C1

€ 

σz = ν σ r + σθ( )
= 2νC1
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€ 

σ r r( ) = C1 −
C2

r2 (D.9)

σθ r( ) = C1 +
C2

r2 (D.10)

where C1 and C2 are determined through substitution of the displacement function into

stress-strain relations with the appropriate boundary conditions.  The relations defining the

displacement, strain and stress constants in equations D.4, D.5, D.6, D.9, and D.10 are

presented in Table D.1, along with relations for the appropriate axial stress or strain.

Let uM r( )  be the radial displacement at any radial location of the cylindrical shell,

due to mechanical stresses.  If an applied longitudinal stress, σL, were to exist, then the

radial displacement of any location within the shell is:

€ 

uM r( ) = A1r +
A2

r
−

νσL r

E

 
 
 

 
 
 (D.11)

The plane stress form of this is:

€ 

uM r( ) =
1− ν

E

 
 
 

 
 
 

ri
2Pi − ro

2Po

ro
2 − ri

2

 

 
  

 

 
  r +

1+ ν
E

 
 
 

 
 
 

Pi − Po

ro
2 − ri

2

 

 
  

 

 
  

ri
2ro

2

r

 

 
  

 

 
  −

νσL r

E

 
 
 

 
 
 (D.12)

Initial Clearance

Since the cylinders were designed for room-temperature assembly, a clearance

exists at the interface.  Many analyses of compound cylinder problems assume that the

adjacent cylindrical shells are in contact with each other and superpose an initial pre-stress

due to an interference fit upon the problem (e.g. Lemczyk and Yovanovich, 1987).

However, by stipulating that the interface radii are the same (neglecting the plane separation

from the contact conductance analysis), we account for the stress required to bring the

surfaces into contact:
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€ 

ro,B + uB ro,B( ) = ri,A + uA ri,A( ) (D.13)

If the initial interference fit is given, but not the initial, unassembled interface radii,

the assembled radii can be used as in Hsu and Tam (1978) to determine the contact

pressure.

Longitudinal Restraint

Consider now two cylindrical shells that initially are placed in load contact with

each other and then heated.  Consider then steady state conditions and assume that the

radial displacements at the interface are the same.  However, the longitudinal displacements

(along the axis of the shells) need not be the same.  Thus, the value of σL  can be zero if

there is no longitudinal restraint, or a significant value if the longitudinal displacements are

the same.  Since the cylindrical shells are assembled with a clearance fit, we must assume

that the actual displacement is somewhere between the no restraint and full restraint

conditions, and thus both analyses must be done.  Obviously, for the plane strain case, this

τ

τ

Cylinder A

Cylinder B

Figure D.1 – Stress states at the interface of cylindrical shells A and B.
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analysis is moot.

Consider the loading on the cylindrical shells at the interface (Figure D.1).  In

addition to the radial stresses, there may be shear stresses exerted between the cylindrical

shells.  For equilibrium to be maintained, the shear stresses acting at the interfacial surface

of each cylindrical shell must sum to zero.  Further, the stresses exerted on shell A by shell

B must be equal and opposing. 

Consider now the free bodies of the cylindrical shells (Figure D.2).  At equilibrium,

the shear stress, τ, acting over the interfacial surface of each shell must be countered by the

longitudinal stress, σL , acting within the wall of the cylindrical shell.  However, these shear

stresses are generally functions of the axial distance, z.  It then follows that the longitudinal

stress within the shell would also be a function of z.  For the equilibrium condition to be

satisfied:

€ 

σL,A π ro,A
2 − ri,A

2( ) = 2π ri,A τ dz
0

L 2

∫ (D.14)

€ 

σL,B π ro,B
2 − ri,B

2( ) = 2π ro,B τdz
0

L 2

∫ (D.15)

and from equilibrium,

€ 

σL,A π ro,A
2 − ri,A

2( ) = σL,B π ro,B
2 − ri,B

2( ) (D.16)

τ
σL,A

x

τ
σL,B

x

Figure D.2 – Free body diagrams of cylindrical shells A and B.
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thus,

€ 

σL,B = σL ,A

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( ) (D.17)

For the purposes of this discussion, the variation of τ as a function of z will be

assumed to be nearly constant.  Thus, the longitudinal stresses within the cylindrical shells

can be assumed to be constants.  Considering the resulting deformation of cylindrical

shells A and B, let L’ be the deformed lengths, let w represent the axial displacement of the

cylindrical shell, and let ∆w represent the change in length due to load.  The deformed

lengths due to both load and thermal expansion are expressed as

€ 

L A
' = L + α A∆TA ri,A( )L + ∆w A = L + εz,A L

L B
' = L + αB∆TB ro,B( )L + ∆w B = L + εz,B L

(D.18)

The axial strain, εz , is given as:

€ 

εz ≡
∂w

∂z
(D.19)

From elastic theory,

€ 

εz,A = σL ,A

EA

− νA

EA

σ r ,A + σθ,A( ) + α A∆TA ri,A( )

εz,B = − σL,B

EB

− νB

EB

σ r ,B + σθ,B( ) + αB∆TB ro,B( )
(D.20)

but, from inspection,

€ 

σ r ,A + σθ,A =
2ri,A

2 σ
ro,A

2 − ri,A
2

σ r ,B + σθ,B = −
2ro,B

2 σ
ro,B

2 − ri,B
2

(D.21)
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Thus,

€ 

εz,A =
σL,A

EA

−
νA

EA

2ri,A
2 σ

ro,A
2 − ri,A

2

 

 
  

 

 
  + αA∆TA ri,A( )

εz,B = − σL,B

EB

+ νB

EB

2ro,B
2 σ

ro,B
2 − ri,B

2

 

 
  

 

 
  + αB∆TB ro,B( )

(D.22)

Since at the interface LA
' = LB

' , εx,A = εx,B , and we can set the two relations in D.22 equal

to each other and solve for the longitudinal stresses:

€ 

σL,A

EA

+
σL ,B

EB

= 2σ
νB

EB

ro,B
2

ro,B
2 − ri,B

2

 

 
  

 

 
  +

νA

EA

ri,A
2

ro,A
2 − ri,A

2

 

 
  

 

 
  

 

 
 
 

 

 
 
 

+ α B∆TB ro,B( ) −α A∆TA ri,A( )( )
(D.23)

Substituting Equation D.19 for σL,B and rearranging slightly:

€ 

σL,A 1+
EA

EB

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( )

 

 
 
 

 

 
 
 = 2σ

EA

EB

νB ro,B
2

ro,B
2 − ri,B

2

 

 
  

 

 
  +

νA ri,A
2

ro,A
2 − ri,A

2

 

 
  

 

 
  

 

 
 
 

 

 
 
 

+ α B∆TB ro,B( ) −α A∆TA ri,A( )( )EA

(D.24)

Solving for σL,A ,

€ 

σL,A = 2σ

νA ri,A
2

ro,A
2 − ri,A

2

 

 
  

 

 
  +

EA

EB

νB ro,B
2

ro,B
2 − ri,B

2

 

 
  

 

 
  

 

 
 
 

 

 
 
 

1+
EA

EB

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( )

 

 
 
 

 

 
 
 

+
α B∆TB ro,B( ) −α A∆TA ri,B( )( )EA

1+ EA

EB

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( )

 

 
 
 

 

 
 
 

(D.25)
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This may in turn be substituted into Equation D.12 (or into Equation D.17 then into

Equation D.12, depending on the cylindrical shell) and used to eventually find the interface

contact stress.

THERMAL EFFECTS

Timoshenko and Goodier (1951) pose the stress and deformation equations as:

€ 

uT r( ) =
1+ ν
1− ν

α
r

∆T r( )rdr
ri

r

∫ + D1r +
D2

r
(D.26)

€ 

σ r ,T r( ) = −
αE

1− ν
1

r2 ∆T r( )r dr
ri

r

∫ +
E

1+ ν
D1

1−2ν
−

D2

r2

 
 
 

 
 
 (D.27)

€ 

σθ,T r( ) =
αE

1− ν
1

r2 ∆T r( )r dr
ri

r

∫ −
αE∆T r( )

1− ν
+

E

1+ ν
D1

1− 2ν
+

D2

r2

 
 
 

 
 
 (D.28)

€ 

σz,T r( ) = −
αE∆T r( )

1− ν
+

2νED1

1+ ν( ) 1− 2ν( )
(D.29)

Taking into account the appropriate boundary conditions for the thermal stress problem

(radial stresses are zero on the curved surfaces), we solve for constants D1 and D2:

€ 

σ r ,T ri( ) =
D1

1− 2ν
−

D2

ri
2

 

 
  

 

 
  = 0 (D.30)

€ 

σ r ,T ro( ) = −
αE

1− ν
1

ro
2 ∆T r( )r dr

ri

ro

∫ +
E

1+ ν
D1

1−2ν
−

D2

ro
2

 

 
  

 

 
  = 0 (D.31)

Solving these for useful groupings:

€ 

ED2

1+ ν
=

αE

1− ν
ri

2

ro
2 − ri

2 ∆T r( )rdr
r i

ro

∫ (D.32)
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€ 

ED1

1+ ν( ) 1−2ν( )
=

αE

1− ν
1

ro
2 − ri

2 ∆T r( )r dr
ri

ro

∫ (D.33)

Substituting these into Equations D.26 – D.29, we obtain the following expressions for the

stresses and radial displacement:

€ 

uT r( ) =
1+ ν
1− ν

α
ro

2 − ri
2 1−2ν( )r +

ri
2

r

 

 
  

 

 
  ∆T r( )r dr

r i

ro

∫ +
ro

2 − ri
2

r
∆T r( )r dr

ri

r

∫
 

 
 
 

 

 
 
 (D.34)

€ 

σ r ,T r( ) =
αE

1− ν
1

r2

r2 − ri
2

ro
2 − ri

2 ∆T r( )r dr
ri

ro

∫ − ∆T r( )rdr
r i

r

∫
 

 
 
 

 

 
 
 (D.35)

€ 

σθ,T r( ) =
αE

1− ν
1

r2

r2 + ri
2

ro
2 − ri

2 ∆T r( )r dr
ri

ro

∫ + ∆T r( )r dr
ri

r

∫ −∆T r( )r2
 

 
 
 

 

 
 
 (D.36)

€ 

σz,T r( ) =
αE

1− ν
2

ro
2 − ri

2 ∆T r( )rdr
r i

ro

∫ −∆T r( )
 

 
 
 

 

 
 
 (D.37)

These, in turn, may be substituted into Equations D.7 to obtain relations for the thermal

strains.

INTERFACE STRESSES

There are two approaches to determining the contact pressure available in this study

– relying upon the temperature distributions within the cylinders, and using the temperature

distributions in conjunction with the strain reported by gages placed on the outer surface of

the outer cylinder at the mid-plane. 

Case I – Without Longitudinal Restraint

Starting with the thermal displacement equation, (Equation D.34), when evaluated at

the inner and outer radii, it is reduced to:
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€ 

uT ri( ) = 2α ri
ro

2 − ri
2

1+ ν( ) ∆T r( )r dr
r i

ro

∫

uT ro( ) = 2α ro
ro

2 − ri
2

1+ ν( ) ∆T r( )rdr
r i

ro

∫
(D.38)

and defining new inner and outer radius values,

€ 

ˆ r ≡ r + uT r( ) (D.39)

the resulting radii may be substituted into the mechanical displacement equations to solve

for the stresses necessary to make the interface radii the same:

€ 

ˆ r o,B + uM,B
ˆ r o,B( ) = ˆ r i,A + uM,A

ˆ r i,A( ) (D.40)

Expanding,

€ 

ˆ r o,B +
−ro,B

2

ro,B
2 − ˆ r i,B

2

 

 
  

 

 
  

1− νB

EB

 

 
  

 

 
  ro,B +

1+ νB

EB

 

 
  

 

 
  

ri,B
2

ro,B

 

 
  

 

 
  

 

 
 
 

 

 
 
 σ −

νB σL ,B ro,B

EB

 

 
  

 

 
  

= ˆ r i,A + ri,A
2

ro,A
2 − ri,A

2

 

 
  

 

 
  

1− νA

EA

 

 
  

 

 
  ri,A + 1+ νA

EA

 

 
  

 

 
  

ro,A
2

ri,A

 

 
  

 

 
  

 

 
 
 

 

 
 
 
σ − νA σL ,A ri,A

EA

 

 
  

 

 
  

(D.41)

neglecting the longitudinal stress terms and solving for interface stress σ = σ I :

€ 

σ I =
ˆ r o,B − ˆ r i,A

ri,A
2

ˆ r o,A
2 − ˆ r i,A

2

 

 
  

 

 
  

1− νA

EA

 

 
  

 

 
  ri,A +

1+ νA

EA

 

 
  

 

 
  

ro,A
2

ri,A

 

 
  

 

 
  

 

 
 
 

 

 
 
 

+
ro,B

2

ro,B
2 − ri,B

2

 

 
  

 

 
  

1− νB

EB

 

 
  

 

 
  ro,B + 1+ νB

EB

 

 
  

 

 
  

ri,B
2

ro,B

 

 
  

 

 
  

 

 
 
 

 

 
 
 

 

 

 
  

 

 
 
 

 

 

 
  

 

 
 
 

(D.42)

Case II – With Longitudinal Restraint

Returning to Equation D.41 and recall the relations for the longitudinal stresses

from the discussion of longitudinal restraint, Equations D.17 and D.25, the relations for the

longitudinal stresses may be substituted into Equation D.41 to obtain:
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€ 

ˆ r o,B + −ro,B
2

ro,B
2 − ri,B

2

 

 
  

 

 
  

1− νB

EB

 

 
  

 

 
  ̂  r o,B + 1+ νB

EB

 

 
  

 

 
  

ri,B
2

ro,B

 

 
  

 

 
  

 

 
 
 

 

 
 
 
σ

−
νB ro,B

EB

 

 
  

 

 
  

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( ) 2

νA ri,A
2

ro,A
2 − ri,A

2

 

 
  

 

 
  +

EA

EB

νB ro,B
2

ro,B
2 − ri,B

2

 

 
  

 

 
  

 

 
 
 

 

 
 
 

1+
EA

EB

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( )

 

 
 
 

 

 
 
 

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

σ

− νB ro,B

EB

 

 
  

 

 
  

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( )

αB∆TB ro,B( ) − αA∆TA ri,B( )( )EA

1+ EA

EB

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( )

 

 
 
 

 

 
 
 

= ri,A +
ri,A

2

ro,A
2 − ˆ r i,A

2

 

 
  

 

 
  

1− νA

EA

 

 
  

 

 
  ri,A +

1+ νA

EA

 

 
  

 

 
  

ro,A
2

ri,A

 

 
  

 

 
  

 

 
 
 

 

 
 
 σ

− 2
νA ri,A
EA

 

 
  

 

 
  

νA ri,A
2

ro,A
2 − ri,A

2

 

 
  

 

 
  +

EA

EB

νB ro,B
2

ro,B
2 − ri,B

2

 

 
  

 

 
  

 

 
 
 

 

 
 
 

1+ EA

EB

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( )

 

 
 
 

 

 
 
 

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

σ

−
νA ri,A
EA

 

 
  

 

 
  

α B∆TB ro,B( ) −α A∆TA ri,B( )( )EA

1+
EA

EB

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( )

 

 
 
 

 

 
 
 

(D.43)

Defining a thermal expansion term (due to the longitudinal stress term):

€ 

ΦL ≡
νA ri,A
EA

 

 
  

 

 
  −

νB ro,B

EB

 

 
  

 

 
  

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( )

 

 
 
 

 

 
 
 

αB∆TB ro,B( ) − αA∆TA ri,B( )( )EA

1+
EA

EB

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( )

 

 
 
 

 

 
 
 

(D.44)
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and solving for interface stress σ = σ II :

€ 

σ II =
ˆ r o,B − ˆ r i,A + ΦL

ri,A
2

ro,A
2 − ri,A

2

 

 
  

 

 
  

1− νA

EA

 

 
  

 

 
  ri,A +

1+ νA

EA

 

 
  

 

 
  

ro,A
2

ri,A

 

 
  

 

 
  

 

 
 
 

 

 
 
 

+
ro,B

2

ro,B
2 − ri,B

2

 

 
  

 

 
  

1− νB

EB

 

 
  

 

 
  ro,B + 1+ νB

EB

 

 
  

 

 
  

ri,B
2

ro,B

 

 
  

 

 
  

 

 
 
 

 

 
 
 

− 2
νA ri,A
EA

 

 
  

 

 
  

νA ri,A
2

ro,A
2 − ri,A

2

 

 
  

 

 
  +

EA

EB

νB ro,B
2

ro,B
2 − ri,B

2

 

 
  

 

 
  

 

 
 
 

 

 
 
 

1+
EA

EB

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( )

 

 
 
 

 

 
 
 

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

+
νB ro,B

EB

 

 
  

 

 
  

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( ) 2

νA ri,A
2

ro,A
2 − ri,A

2

 

 
  

 

 
  +

EA

EB

νB ro,B
2

ro,B
2 − ri,B

2

 

 
  

 

 
  

 

 
 
 

 

 
 
 

1+ EA

EB

ro,A
2 − ri,A

2( )
ro,B

2 − ri,B
2( )

 

 
 
 

 

 
 
 

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 
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Case III – Strain Gage Formulation

Since we assume that the displacement of the outer radius is due to the temperature

distribution and the effect of the expansion of the inner cylinder:

€ 

εθ =
∆θ
θ

=
∆ro,A 2π
ro,A 2π

=
u ro,A( )

ro,A

=
uT ro,A( )

ro,A

+
uM ro,A( )

ro,A

(D.46)

Solving for the mechanical displacement, the relation can be subsequently solved for the

interface pressure.  The reported expansion less that accounted for by thermal expansion

is:

€ 

∆θ
θ

ro,A − uT ro,A( ) = uM ro,A( ) (D.47)
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Recall that
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Thus, neglecting longitudinal stresses:
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∆θ
θ

ro,A
° + ro,A − ˆ r o,A = σ

1− νA

EA

 

 
  

 

 
  ro,A +

1+ νA

EA

 

 
  

 

 
  

ri,A
2

ro,A

 

 
  

 

 
  

 

 
 
 

 

 
 
 

ro,A
2

ro,A
2 − ri,A

2

 

 
  

 

 
  (D.48)

Solving for σ = σ III
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APPENDIX E

SAMPLE CALCULATIONS AND ANALYSIS OF UNCERTAINTY

The experimental data used in this appendix are taken from the aluminum 6061-

stainless steel 304 compound cylinder dataset, at the 750 W experiment.  The uncertainty

analysis takes advantage of the work of Kline and McKlintock (1953).  Given some

function, f, of n variables, the uncertainty of the function for a set of parameters is:

€ 

KM f( ) ≡ Uf =
∂f

∂x i

Ux i
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1
2

(E.1)

The uncertainties calculated in this appendix are valid for this data point only, but are

representative of the uncertainties for all data in the study, which (in extreme cases) may

take values between one half and two and a half times the values calculated here.  A table of

the calculated values and relevant uncertainties for the data of this experiment can be found

at the end of this appendix. 

GEOMETRIC DATA

Cylindrical Shell Geometry

Table E.1 details the length, inner radius, outer radius of the AL-6061 and SS-304

cylindrical shells that form the composite cylinder used to acquirmahe the experimental

data used in this sample calculation.  These radii were obtained through measurements

taken in the laboratory, and measurements taken at the Providence, RI facility of Mahr-

Federal, Inc..  From these radii are determined the nominal interface radius:
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ri =
ri,A + ro,B

2
(E.2)

and nominal interface area:

€ 

A i = 2πL ri (E.3)

Defining an average error of the interface radii:
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U r = Ur i ,A

2 + U ro,B

2[ ]
1
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(E.4)

The uncertainties of the nominal radius and nominal area are
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and
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U Ai
= 2πL U r( )2 + 2π rU L( )2[ ]

1
2

(E.6)

Cylindrical Waviness

Linear surface parameters are supplied by the SurfAnalyzer and by Mahr-Federal

after characterization of the cylindrical shells.  Circumferential waviness parameters are not.

Table E.1 – Relevant Cylindrical Shell Dimensions

Cylinder
Length

(m)
Inner Radius

(m)
Outer Radius

(m)

B
AL-6061

0.1270
± 0.00127

0.00635
± 7.6E-4

0.0253824
± 3.4E-05

A
SS-304

0.1270
± 0.00127

0.0253958
± 6.4284E-06

0.049399
± 6.35E-5
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However, partially processed sensor output was included with the roundness and

cylindricity data.  The sensor output consisted of 4096 data points taken at each of the four

locations of the cylindrical scans.  Waviness for the cylindrical surface is calculated in the

same manner as for a flat surface.  For a flat surface, assuming a uniform sample density:
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Similarly for a cylindrical surface:
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Radius of Curvature

If the isotropic surface waviness (or roughness) is assumed to take the shape of a

sinusoidal waveform:

€ 

S x( ) = A sin Bx( ) (E.9)

and taking advantage of the natural symmetry of the trigonometric functions, the average

slope is calculated as

                

L

Wq
y y

y ≡ r − rmean

Θ
rmean

Wq

(A) (B)

Figure E.1 – Waviness for (A) a nominally flat surface, and (B) a curved surface.
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€ 

m = tanθ( ) =
2

πB
A BcosBx( ) dx

0

π
2

B

∫ (E.10)

After some manipulation,

€ 

tan θ( ) =
2A B

π
(E.11)

a relation between the reported amplitude, reported waviness slope, and radius of curvature

at the tip can be constructed.  Recall that the radius of curvature for a plane curve in

Cartesian coordinates is:

€ 

ρ x( ) =
1+ Sx x( )2[ ]

3

2

Sxx x( )
(E.12)

or
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ρ x( ) =
1+ ABcosBx( )( )2[ ]

3

2

A B2sin Bx( )
=

4A

π tan θ( )( )2 (E.13)

Note that both A and 

€ 

tan θ( )  are parameters obtained through the surface metrology,

where A is either the roughness (σRMS) or the waviness (WRMS)of the surface.

EXPERIMENTAL DATA

Measurement Uncertainty

Characterization of the thermocouple wire consisted of comparing the indicated

temperatures of eight thermocouple junctions with that of a NIST-traceable mercury

thermometer.  The thermocouples were installed in a single copper block, which was

submerged in a constant-temperature circulating bath along with the thermometer.  The



144

bath temperature was varied between 260 K and 560 K, and temperature readings were

taken at least two hours after the bat temperature was changed.  Thermocouple readings

were obtained through a FieldPoint program, which was written to take 300 samples at a

rate of four per second.  The thermometer was read three times.  Average readings were

compared.  The thermocouple uncertainty was calculated at each of the five temperatures as

€ 

U T / C =
U

T j
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(E.14)

which is the sum of the square of the average thermocouple channel measurement

uncertainty and the square of the difference between the average thermocouple temperature

and the NIST-traceable thermometer temperature. 

Temperature Data

The recorded thermocouple readings within the AL-6061/SS-304 composite

cylinder at steady state for the 750 W heater setting are tabulated in Table E.2.  Similarly,

The recorded thermocouple readings within the AL-6061/SS-304 composite cylinder at

steady state for the 300 W heater setting are tabulated in Table E.3.  The listed temperature

uncertainties are those obtained through multiple polling of the thermocouples.

Temperature uncertainties used in these calculations are a combination of the

systemic uncertainty of ± 0.003 K (due to the resolution of the FieldPoint temperature

module), the thermocouple uncertainty of ± 0.3 K (obtained through comparison of a

readings of a NIST traceable thermometer with multiple measurements of samples

immersed in a constant temperature bath), and the measurement uncertainty obtained

through multiple polling of the thermocouples. 
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U T = Usystem
2 + U T / C

2 + U M
2[ ]

1
2 (E.15)
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Temperature Distribution

Under steady, one-dimensional conduction conditions (without internal generation),

the temperature distribution within a cylindrical shell is a function of radial location only.

Knowing the inner and outer temperatures and radii, this relation is expressed as:
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Table E.2 – Location-Temperature Data Acquired in the AL-6061/SS-304 Composite
Cylinder at a Nominal Heater Power of 750 W

r, m T, K UT, K

0.01016 377.198 0.0403

0.01397 376.829 0.0529

0.01778 376.652 0.0470
C

yl
in

de
r

B
0.02159 376.223 0.0380

0.03048 326.046 0.0480

0.03556 313.210 0.0370

0.04064 306.153 0.0442

C
yl

in
de

r
A

0.04572 300.312 0.0534

Table E.3 – Location-Temperature Data Acquired in the AL-6061/SS-304 Composite
Cylinder at a Nominal Heater Power of 300 W

r, m T, K UT, K
0.01016 349.010 0.0276

0.01397 348.886 0.0313

0.01778 348.896 0.0240

C
yl

in
de

r
B

0.02159 348.935 0.0225

0.03048 305.552 0.0196

0.03556 298.895 0.0135

0.04064 295.370 0.0128

C
yl

in
de

r
A

0.04572 292.194 0.0116
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By changing the independent variable from the radial location to the natural log of the

radial location, this relation is reduced to a linear form.  The standard error of the

correlation of the correlation is the expected error of the predicted value, and is calculated

as:
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The uncertainty of the mean interface temperature is:
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and interface temperature discontinuity are found to be:
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The uncertainty in the least-squares slope is determined by solving Equation E.16

for the slope and using the resulting relation to find the uncertainty:
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A least squares technique is used to determine the parameters m and b for the best-fit line

through the data.  The uncertainty of the parameter, b, is taken to be the standard error. 
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Average Shell Temperature

Since the temperature distribution within the shells is likely to be non-linear with

respect to r, the appropriate average temperature for each shell must be the integral-

averaged temperature: 
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T =
1

ro
2 − ri

2 mln ρ( ) + b( )ρdρ
r i

ro

∫ (E.21)

This is the average shell temperature that will be used to determine the value of

temperature-dependent thermophysical properties.  The uncertainty for this average

temperature may be obtained by symbolically evaluating the expression for the average

temperature and then applying the KM operator:
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THERMOPHYSICAL PROPERTIES

Although the room temperature thermophysical properties of the materials used in

the present study interest are tabulated in Table 3.1, the conductivity and coefficient of

thermal expansion have a significant dependence on temperature.  Fifth order polynomial

expressions have been obtained for the conductivity and coefficient of thermal expansion.

One common practice (adopted here) has been to assume that handbook values and derived

polynomial expressions for thermophysical values have a fixed uncertainty on the order of

(and probably less than) five percent, unless otherwise specified.  The inclusion of the
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temperature uncertainty negligibly affects the value of the uncertainty of the fifth order

polynomial expression for the thermophysical properties.  For an arbitrary property Ψ:
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Taking, for example, the thermal conductivity of the aluminum inner shell, the increase in

the percentage uncertainty is 0.003%, and is negligible.

Interface Heat Flux

From conduction theory, the expressions for the heat rate and heat flux through a

cylindrical shell at the nominal interface radius is
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The corresponding uncertainty relation for the interface heat flux is:

€ 

U
qi

" =
k

ri
U m

 

 
 
 

 

 
 
 

2

+
m

ri
0.05k( )

 

 
 
 

 

 
 
 

2

+
km

ri
2 U r i

 

 
 
 

 

 
 
 

2 
 
 

  

 
 
 

  

1
2
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The histogram in Figure E.2 illustrates the distribution of the uncertainty in the

value of the interface heat flux on a percentage basis.

The Effect of Temperature Drift on the Heat Flux Calculation

If the interface heat flux is divided by thermal conductivity (appropriate to the other

parameters used to determine the interface heat flux), the resulting expression has the units

of temperature.  The uncertainty of the heat flux-conductivity ratio is expressed as:
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expanding the uncertainty for the least squares slope, and using the formulation for the

outer cylinder:
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Taking the uncertainty of the temperature to be equal to the allowed temperature drift and

holding all else constant, a relation between the temperature drift tolerance and the

uncertainty in the calculated heat flux can be obtained.  Figure E.3 relates the change in the

calculated heat flux to the heat flux-thermal conductivity ratio as a function of the

temperature drift tolerance. 

Thermal Contact Conductance

The thermal contact conductance is the ratio of the heat flux to the temperature

discontinuity at the interface:
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Figure E.4 illustrates the distribution of the percent uncertainty in the thermal contact

conductance calculation.
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Figure E.2 – Histogram of the percentage uncertainty in the value of the interface
heat flux for the 170 data points used in this study.
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Figure E.3 – The effect of temperature drift tolerance on heat flux uncertainty.
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Figure E.4 – Histogram of the percentage uncertainty in the value of the thermal
contact conductance for the 170 data points used in this study.
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Radiation View Factor and Heat Loss

If the radiation shield and exposed end surfaces of the cylindrical shells are

approximated as parallel annular rings, the radiation view factor (and subsequently the

radiation heat loss from the ends) may be determined.  Following the method of Example

6-8 in Siegel and Howell (1992), the view factor from shells A and B to the radiation shield

is at least:

€ 

FA →S ≥ 0.7090

FB→S ≥ 0.7303
(E.30)

The radiation heat transfer from the inner shell is expressed as
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(E.31)

The uncertainty of the radiation heat loss calculation is
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Strain

Taking the initial test results, with heater power set to zero, as the unstrained

condition, and all subsequent ones as strained, we can determine the change in strain for

each set of test parameters.  The partially corrected strain reported by the gage is expressed

as:
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However, we must further correct the strain for transverse sensitivity:

ε i =
1− ν0K t

1− K t
2 ε i

' − K tε j
'( ) (E.34)

The results reported from the 90° strain gage rosettes can then be used to determine the

interface stress.  Strain and related uncertainties in the longitudinal and circumferential

directions are calculated and corrected according to methods recommended by Omega

Engineering, Inc. (1995) and Measurements Group, Inc. (1999b).  Embedded within the

uncertainty calculation are uncertainties in measured output voltage and gage thermal

output.

INTERFACE PRESSURE

Thermal Expansion

From Equation D.38, the thermal displacement of the inner radius of shell A is
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∫ (E.35)

Similarly, the thermal displacement of the outer radius of Shell B is

€ 

uT ro,B( ) =
2α ro,B
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2 1+ ν( ) ∆T r( )r dr
r i ,B
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∫ (E.36)

Since these displacements are approximately four orders of magnitude less than the

undisplaced radii, the uncertainties of the displaced radii are assumed to be those of the

undisplaced radii.
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Case I

The mechanical restraint due to the contacting cylinders are imposed on the

displaced radii.  For the interface radii to be the same, the interface stresses must be as well.

From Appendix D (Equation D.42):
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To facilitate an uncertainty analysis, this relation is broken into pieces:
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σ I = AA
DI
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(E.38)
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The uncertainty of the interface pressure relation is then:
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Case II

Similarly, when the effects of the longitudinal stress are included, (Equation D.45):
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To facilitate an uncertainty analysis, this is broken into pieces:
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σ II = FF
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Recalling that the longitudinal thermal expansion term is defined in Equation D.44,
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Again, to facilitate an uncertainty analysis, this relation is broken into pieces:
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LA LB
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(E.49)
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The uncertainty of 
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σ II  is then:

€ 

Uσ II
=

U FF

DII

 
  

 
  

2

+ FF CC
DII 2

UBB

 
  

 
  

2

+ FF BB
DII 2

UCC

 
  

 
  

2

+
FF EE

DII 2 UDD

 
 
 

 
 
 

2

+
FF DD

DII 2 U EE

 
 
 

 
 
 

2

+
FF II JJ−HH( )

DII 2 U GG

 

 
 
 

 

 
 
 

2

+ FF GG
DII 2

U HH

 
  

 
  

2

+ FFGG II
DII 2

UJJ

 
  

 
  

2

+ FFGG JJ
DII 2

U II

 
  

 
  

2

 

 

 
 
 
  

 

 
 
 
 
 

 

 

 
 
 
  

 

 
 
 
 
 

1

2

(E.58)



162

Case III

As developed in Equation D.49, the stress at the interface due to differential thermal

expansion of the two shells can be determined using the known temperature distribution in

the outer cylinder and the corrected strains in the circumferential and longitudinal

directions:
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or
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(E.60)

by parts:
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Thus,
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Table E.4 – Calculated Values and Associated Uncertainties for AL-6061 - SS-304
700W Test

Parameter Value
Absolute

Uncertainty
Percent

Uncertainty

€ 

ri 2.5380E-02 5.2480E-05 0.207%

€ 

A i 2.0250E-02 7.9844E-04 3.943%

SETA 1.7982E+00 — —

SETB 9.9000E-02 — —

Ti 3.5619E+02 9.0047E-01 0.253%

∆Ti 3.9862E+01 1.8010E+00 4.518%

mA -6.2899E+01 4.9715E+00 7.904%

bA 1.0519E+02 1.7982E+00 1.709%

mB -1.2205E+00 1.4843E-01 12.161%

bB 3.7162E+02 9.9000E-02 0.027%

€ 

T A 3.1080E+02 3.8025E+00 1.223%

€ 

T B 3.7660E+02 1.3263E-01 0.035%

€ 

qi
"

3.5467E+04 2.9974E+03 8.451%

€ 

hc 8.8976E+02 8.5267E+01 9.583%

€ 

qrad 3.5247E+00 1.3431E-01 3.811%

€ 

∆εθ 9.5710E-05 3.5834E-05 37.439%

€ 

∆εz
-1.6974E-04 5.6185E-05 33.100%

€ 

σ I 7.2478E+07 8.1790E+06 11.285%

€ 

σ II 5.0203E+07 7.2747E+06 14.491%

€ 

ΦL -8.5829E-06 1.1791E-06 13.738%

€ 

σ III 1.3474E+07 6.4256E+06 47.689%

AA 4.0354E-05 4.2992E-06 10.654%

BB 3.5904E-01 1.3135E-04 0.037%

CC 7.4144E-13 3.7491E-14 5.057%

DD 1.0668E+00 7.0177E-05 0.007%

EE 2.7237E-13 1.4759E-14 5.419%
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Table E.4 (continued)

Parameter Value
Absolute

Uncertainty
Percent

Uncertainty

FF 3.1771E-05 4.4580E-06 14.032%

GG 1.1912E-01 1.1950E-02 10.032%

HH 8.0267E-14 5.6757E-15 7.071%

II 2.4274E-13 1.7164E-14 7.071%

JJ 2.9619E+00 9.5725E-04 0.032%

KK 1.5161E-05 4.3028E-06 28.381%

LL 1.3590E+00 1.3135E-04 0.010%

MM 8.2792E-13 4.1560E-14 5.020%

LA 3.1934E-13 2.5577E-14 8.009%

LB 2.4636E+08 2.2699E+07 9.214%

LC 9.1726E+00 2.5592E-14 8.009%
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Table E.5 – Calculated Values and Associated Uncertainties for AL-6061 - SS-304
300W Test

Parameter Value
Absolute

Uncertainty
Percent

Uncertainty

€ 

ri 2.5380E-02 5.2480E-05 0.207%

€ 

A i 2.0250E-02 7.9844E-04 3.943%

SETA 5.5899E-02 — —

SETB 9.1365E-01 — —

Ti 3.2986E+02 4.5768E-01 0.139%

∆Ti 3.8049E+01 9.1536E-01 2.406%

mA -3.2534E+01 2.5453E+00 7.824%

bA 1.913E+02 5.5899E-02 0.029%

mB -1.0133E-01 5.7762E-02 57.001%

bB 3.4851E+02 9.1365E-01 0.262%

€ 

T A 2.9768E+02 1.9431E+00 0.652%

€ 

T B 3.4892E+02 6.6407E-02 0.002%

€ 

qi
"

5.6847E+01 1.8033E+04 31722%

€ 

hc 1.4940E+00 4.7394E+02 31722%

€ 

qrad 1.7254E+00 7.8005E-02 4.521%

€ 

∆εθ -5.0739E-06 8.3765E-06 165.089%

€ 

∆εz
-9.6557E-05 8.4121E-06 8.712%

€ 

σ I 1.5993E+07 4.0868E+06 25.554%

€ 

σ II 1.6044E+07 4.0961E+06 25.530%

€ 

ΦL 3.6018E-08 2.0991E-07 582.790%

€ 

σ III -1.1777E+06 1.3822E+06 117.363%

AA 1.3652E-05 4.2992E-06 31.491%

BB 3.5924E-01 1.3146E-04 0.004%

CC 2.0727E-12 1.0500E-13 5.066%

DD 1.0668E+00 7.0226E-05 0.007%

EE 1.0225E-13 5.4477E-15 5.328%
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Table E.5 (continued)

Parameter Value
Absolute

Uncertainty
Percent

Uncertainty

FF 1.3688E-05 4.3043E-06 31.446%

GG 1.1465E-01 7.0882E-03 6.183%

HH 2.4233E-13 1.7135E-14 7.071%

II 2.0304E-14 5.678E-15 7.071%

JJ 2.9663E+00 9.5952E-04 0.032%

KK -3.6835E-06 4.3191E-06 117.255%

LL 1.3592E+00 1.3146E-04 0.010%

MM 2.3010E-12 1.1559E-13 5.0234%

LA 2.0618E-15 1.2014E-14 582.693%

LB 3.6264E+07 3.6275E+06 10.003%

LC 2.0759E+00 7.6080E-02 3.660%
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