Calibration of High Temperature Thermal Conductivity System

New Algorithm to Measure Heat Capacity using Flash Thermal Diffusivity in Thermoelectric Materials

Rahul Deb – Caltech SURF Fellow Mentor: Dr. Jeffrey Snyder Jet Propulsion Laboratory

Presentation Map

Introduction

Thermoelectric Materials Background Research Goal & Heat Capacity Measurements

Process

Flash Thermal Diffusivity

Experiments

Stainless Steel Comparison
Pulse Max Integral Fit
Graphite Comparison Algorithm

Conclusion

What are Thermoelectrics?

- Materials that are power generators or coolers depending on their use
- Case 1:

Heat gradient => electron flow = current

Case 2:

Current flows reverse heat gradient = refrigerator

Thermoelectric Applications

RTGs in Space Missions

Waste Heat Automobiles

Peltier Coolers

Direct Power Source

Improving Thermoelectrics

- Limiting use factor: only 4-6% efficiency
- 2 ways to improve thermoelectrics:
 Develop more efficient materials
 Improve Measurement Systems

Research Goal

Improve the figure of merit calculation for thermoelectrics by improving the accuracy of heat capacity measurements

$$\mathbf{z} \, \mathbf{T} = \frac{\alpha^2}{\rho \, \alpha' \, C_p \, \mathbf{d}}$$

 C_p - heat capacity α - Seebeck coefficient ρ - electrical resistivity α' - thermal diffusivity d - density

Improved heat capacity, Cp, measurements will directly improve the thermoelectric figure of merit

Flash Thermal Diffusivity

Background Effects

Stainless Steel Comparison Experiment 1

- Measurement: I_D Detector Output
- Hypothesis: $I_D = I_B + I_S$
- If I_B removed, just have sample temperature ⇒ eliminates background effects seen earlier

Stainless Steel Comparison

Theoretical Detector Outputs vs. Sample Temperature

Stainless Steel Comparison

Sample 1 fully coated in graphite, emissivity is 1, Detector should pick up normal output, I_D

Sample 2 was left uncoated on one half, the emissivity is 0, so no output signal. Any signal detector picks up should be background, I_B

Stainless Steel Comparison

Detector Output vs. Sample Temperature

Pulse Max Integral

Experiment 2

■ Measurement: P — Pulse Max

$$P = \Delta T * \frac{dIs}{dT}$$

Pulse Max measured over greater time interval, so less prone to background effects

Pulse Max Integral

Detector Out and Pulse Max Test Function vs. Sample

Pulse Max Integral

Detector Out Compared to Pulse Max Fit for NSKP 18

Experiment 3

Basis: 3D Cross Section

Every coated sample should have some signal characteristics of pure graphite

Any other signal measured should be due to sample material

Need to develop formula to express the comparison technique

Pulse max:
$$P = \Delta T * \frac{dIs}{dT}$$

Heat Capacity:
$$Cp = Q/(m * \Delta T) \longrightarrow \Delta T = Q/Cp * m$$

$$\rightarrow$$
 P * Cp * m = Q * dIs/dT = Q' Graphite Standard

$$Q' = P(s) * Cp(s) * m(s)$$
 Sample Properties

$$Cp(s) = Q' / \{P(s) * m(s)\}$$

To make Q', need Cp and P data for graphite standard

*From Lab measurements

Graphite Specific Heat vs. Sample Temperature

*From Reference material

Standard Graphite Algorithm, Q', vs. Sample Temperature

$$Q'(T) = -8.7124E-14 T^4 + 3.4188E-10 T^3 + 1.5829E-6 T^2 + 4.0911E-5 T - 0.02258$$

To test, used a skutterudite, a new thermoelectric material

Dulong-Petit law gave the specific heat of this sample as 0.23 Joules/gK at 430°C, with it increasing slightly as temperature increased

Conclusion

Improved heat capacity algorithm achieved after testing multiple algorithms

Gives specific heat measurements in real time, no additional calculations needed

New materials can be measured more accurately

Older materials can be remeasured to find new avenues to pursue in materials research

Future work: Test graphite comparison algorithm using different types of materials, especially standards such as stainless steel, to ensure validity of new algorithm

Acknowledgements

- Dr. Jeff Snyder JPL, for many great suggestions and use of his lab
- Dr. Richard Blair –JPL, for numerous creative and computational suggestions
- Matt Tushscherer JPL, experimental assistance
- Caltech SURF Program for funding this research

Acknowledgements

Dr. Jeff Snyder

Dr. Richard Blair Matt Tushscherer

Caltech SURF Program