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ABSTRACT

The applications of fibre reinforced plastic (FRP) materials in cryogenic engineering
have stimulated keen interest in the investigation of its properties. The reliable design data
generated by a precisely controlled setup at identical environment of its applications are
extremely important. This paper describes an apparatus based on a GM refrigerator for the
simultaneous measurements of thermal conductivity, thermal expansion and thermal
diffusivity using a double-specimen guarded-hotplate, 3-terminal capacitance technique
and Angstrom method respectively in the temperature range from 30 K to 300 K. An
integrated and perfectly insulated sample holder is designed and fabricated in such a way
that the simultaneous measurements of the above properties are conveniently and
accurately carried out at different temperatures. A set of stability criteria has been followed
during the measurements to ensure the accuracy of the experimental data. The setup is
calibrated with stainless steel and copper and the experimental results are within 10 % of
the published results given in the literatures.

INTRODUCTION

The selection of materials for low temperature application depends on its properties
compatible to the applications. Such properties can be imparted into the FRPs using
suitable fibres. However, newly emerging materials are required to be studied properly.
The accurate measurement of thermo-physical data may reveal many hidden truths. In this
paper, an effort has been made to measure the three properties, i.e. thermal diffusivity,
thermal conductivity and thermal expansion of FRPs from 30 to 300 K simultaneously.

An experimental setup for the simultaneous measurements with different
combinations of thermal conductivity, thermal diffusivity, thermal expansion and specific
heat of materials using several techniques have been reported [1-12] at different range of
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FIGURE 1 Schematic diagram of the experimental setup for the simultaneous measurement of thermal
conductivity, thermal expansion and thermal diffusivity

temperatures under non-steady and steady state conditions. However, simultaneous
measurements of all these properties together are not reported yet. Thus, an attempt has
been made to develop such a setup to study the temperature dependence on thermal
properties of fibre-reinforced plastics down to 30 K.

DESCRIPTION OF EXPERIMENTAL SETUP

The schematic views of the experimental setup and the integrated sample holder are
shown in FIGURE 1 and 2 respectively. The main heater of 1800 ohm is sandwiched by
two geometrically similar samples with the help of top and bottom hot plates, which are
guarded by another heater of 3200 ohms. Heaters are made of canthalum wire and
connected by thin 32-gauge phosphor-bronze wire. The temperature difference between
these heaters is measured by a copper-constantan differential thermocouple. The surface
temperature of the samples is measured by the platinum resistance thermometers, having
100 Q at 273 K (PRT-100). Apiezon-N grease is applied at all the contacting surfaces to
reduce the contact resistance. The heat leak by the connecting leads are minimized by using
a thin 32-gauge copper wire of 40 cm length, and is thermally anchored at the cold head
and a free length of 25 cm from the vacuum adopter, as suggested in [13]. The effect on
dissimilar metal contacts in the connecting leads is also minimized by the thermal
anchoring.

The capacitor plates for the measurement of thermal expansion are kept considerably
away from the heater assembly of the thermal conductivity cell. The sample is gently fitted
into the clamping head of the thermal conductivity cell. The high-terminal electrode is kept
in close contact with sample without any air gap. The guard electrode is threaded down to
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the sample holder till it shows electrical contact with high terminal electrode. The inner
surface area of the guard electrode is coated with electrically insulating varnish. A teflon
cap, which has a central hole for low terminal electrode with 0.1 mm radial gap between
them, is threaded down for 2 mm into the sample holder. The low terminal electrode is
tightened with the brass nut, which is kept on the teflon cap. The vertical movement of the
low terminal electrode is adjusted by screwing the nut and kept just above the high terminal
electrode. All electrodes, made of brass with high surface finish, are kept parallel to each
other. It is also checked by passing light rays and observing the images. The sample
temperature is measured using a copper-constantan thermocouple with reference to heat
sink temperature. The physical dimensions of the cell, electrodes and the sample are
measured by a precision micrometer with an accuracy of 0.01 mm.

The temperature wave in thermal diffusivity measurements is generated by a heater
made of canthalum wire of 1800 Q, i.e. the main heater of the thermal conductivity cell.
The current is fed to the heater from a programmable voltage/current source by the
pulsating voltage having square wave of peak voltage 8 V and current 35 mA. This is fed at
an interval of 10 to 15 milliseconds, in case of stainless steel. The surface temperatures of
the sample are monitored by PRT-100 sensors. The phase difference of the temperature
wave at both the surfaces of the sample is measured with respect to a reference signal. All
the electrical connections are made using coaxial cable, which is properly shielded and
grounded.

The experiments were carried out in the temperature region from 30-300 K. Heat leak
of this setup have been reduced by using 16 layers of mylar insulation [14] followed by
stainless steel radiation shield. The conducting leads are long, thin and thermally anchored
and kept at a vacuum of 10"7 kPa.

Low ternined
electrode (Brass)

Thermocouple

FIGURE 2 Cross-sectional view of the integrated sample holder with samples.
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TECHNIQUES

The selection of a particular technique for the measurement of any thermal properties
depends on the physical nature of the materials, temperature range, geometry of the sample,
desired accuracy of the results and the experimental convenience. The techniques used for
the simultaneous measurement of thermal conductivity and thermal expansion are guarded-
hotplate method and three-terminal capacitance method respectively. Techniques for these
measurements have been discussed in detail [12].

An attempt has been made to study the thermal diffusivity of the composite materials
adopting Angstrom' method with this setup in the temperature ranges from 30-300 K. The
basic principle of this method is that if one end of the sample is heated periodically, then
the propagation of temperature wave along the sample also varies with the same period but
with diminishing amplitude. Moreover, as the temperature wave travels along the sample
with finite velocity, there is a relationship with varying phase. Thermal diffusivity is
determined by measuring the phase difference across the sample surfaces, period of the
wave and thickness of the sample [1]. The experimental setup for the individual
measurement of thermal diffusivity using this technique is discussed elsewhere [15].

EXECUTION

In the thermal conductivity measurement, uniform heat flux from the main heater is
applied normal to the samples. The temperature difference of 1.00 to 2.00 K across the
sample thickness is maintained. To improve the accuracy of the results, the sample surface
temperatures are kept nearer to the desired temperature. The power input to the guard
heater is adjusted in such a way that the temperature difference between the main heater
and guard heater is kept less than 0.05 K. The thermal conductivity is thus determined
using one dimensional Fourier' heat conduction equation:

_ = _
1

where kt, V, I, A and AT are the thermal conductivity (W/m-K) of the sample, applied
voltage (V), current (A) passing through the heater wire, effective area (m2) of the sample
and temperature difference (K) across the sample thickness respectively. In the thermal
expansion measurement, change of capacitance is measured at two different temperatures
and thus sample expansion is determined with reference to 300 K. The inner surface area of
the guard electrode is coated with electrically insulating varnish to avoid electrical contact
with low terminal electrode. The Teflon cap, which holds the low terminal electrode, is
used to avoid the electrical contact between sample holder and low terminal electrode. The
change of sample thickness is given by:

where d2, di, Ci, Q are the distance between the electrodes (m) and corresponding
capacitance (F) at temperature Ta and TI (K) respectively; s0 and r are permittivity of
vacuum (8.854 pF/m) and effective radius (m) of the capacitor plate respectively. In the
thermal diffusivity measurement, pulsating heat is applied with a defined frequency. The
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surface temperature is monitored by PRT sensors and the phase difference across the
sample is measured by a lock-in amplifier. The thermal diffusivity is thus calculated by:

TD = - nl2

(3)

where 1, T and Aq> are the thickness (m) of the sample, period of wave (s) and phase
difference across (radian) the sample respectively.

EXPERIMENTAL ANALYSIS

The qualitative performance of any experimental setup can be specified in terms of
inaccuracy. The error analysis estimates the limits of the probable system errors and
expected inaccuracy in the measurement process. However, a more reliable estimate of the
inaccuracy is obtained from the statistical analysis of the experimental results. In some
cases, not only experiments are repeated, the entire process of reassembling the sample
holder with sample and then carrying out the experiments are also executed. These
investigations and the subsequent modification have resulted in a high degree of reliability.
In temperature measurements, the conducting leads are thermally anchored at the heat sink
thus heat conducted along the wire in intercepted at the sink. In sample holder assembly, an
additional resistance by the contact surfaces and the differential thermal contraction
between the surfaces increase the contact resistance. These are nullified by applying
Apiezon-N grease at the contacting surfaces. The contraction of length and diameter of the
sample due to cooling would result in a measurement error and it is reduced by perfectly
clamping the samples.

The total uncertainties for thermal conductivity values consist of contributions from
the systematic bias, experimental imprecision, material variability and calculation error.
The main error lies in the measurement of the temperature difference across the sample and
the heat input to the sample. In order to reduce the conduction losses from the heaters, thin
phosphor-bronze wire is used as connecting leads because of its high electrical and low
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FIGURE 3. Comparison of experimental and published values of thermal conductivity (Teflon)
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thermal conductivity. The measurement error of voltage and current is found less than 0.1
%. Although the accuracy of the form factor (I/A) is limited by an error of 1 to 2 %, it is
constant for one set of samples. This does not affect the relative values of the
measurements taken at different temperatures. The inaccuracy of the measurement of
thermal conductivity of the insulating materials is difficult to reduce because the
maintaining of the thermal losses in the level of microwatts is more complicated. The
inaccuracy due to non-unidirectional heat flow through the sample is prevented by using a
guard heater. The relative error in the measurement of thermal conductivity is the sum of
the relative errors as that of applied power, thermal losses, temperature difference, length
and area of the sample. It is estimated to be about 9 % resulting from the summation of the
individual errors. The desired set point temperature of the sample holder is maintained by
the temperature controller. Even when it has stabilized, there is a small temperature
difference across the sample. This is measured and subtracted from the temperature
difference created by main heater. The temperature of the sample is measured with time
from the start of stabilization to the end of it. Heat leak by convection is minimized using
high vacuum and thermal anchoring of lead wires to restrict the conduction loss. Similarly,
the radiation loss is eliminated using number of mylar layers followed by a highly polished
stainless steel shield chamber. Thus the heat leak by all possible means is reduced to a
negligible value.

In the measurement of thermal expansion, the distance between the capacitor plates is
kept at minimum in order to reduce the fringing effect. The guard electrode is used to
control the fringing flux and to avoid the electrical field. Thus, capacitor plates are free
from the edge effects. To reduce the thermal noise in the measurement of capacitance, the
heaters are kept away from capacitor cell. As temperature decreases, the area of the
capacitor plates also decreases inducing a change of capacitance. Non-parallelism of the
capacitor plates is also checked by light and images and this error comes about 1%. The
expansion of the sample holder is determined during the calibration of the thermal
expansion measurement setup. The relative error in the measurement of coefficient of
thermal expansion is the sum of square of measurement of length, measurement of
increment of length, temperature measurement and the temperature distribution in the
sample, which is a common source of error in various types of dilatometer [17]. These
considerations have substantially reduced the total error [12]. The relative error in the
measurement of thermal expansion coefficient is within 8 %.

Calibration curves for the thermal expansion setup

I -H

100 200 250 300

Temperature (K)
FIGURE 4. Comparison of experimental and published values of thermal expansion (Teflon)
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FIGURE 5. Comparison of experimental and published values of thermal diffusivity (Teflon)

The thermal diffusivity setup requires a voltage pulse while raising the temperature of
the sample. Thus it is difficult to keep the sample and radiation shield of the sample holder
at the same temperature. The frequency of the pulsating voltage is selected in such a way
that the thermal wave is attenuated at the other end of the sample so effects of finite length
are nullified. The relative error in the measurement of thermal diffusivity is the sum of the
relative errors in the measurement of phase difference, sample thickness and period of the
wave. The results are found to be within 10 % of the published value in the literature.

The preceding error analyze explains the systematic errors in this measurement.
Experiments have been carried out to calculate the errors in repeatability.

CALIBRATION

Material variability is so extensive that only standard specimens are required to be
used for comparison of the performance of the setup. The availability of the standard
reference materials makes the results in more accurate data for solids. The experimental
setup is calibrated for the measurement of thermal conductivity, thermal expansion and
thermal diffusivity using stainless steel, copper and stainless steel respectively. Teflon as
an insulating material is also used as a sample to calibrate the developed setup. It is
observed that the experimental results are always within 10% of the literature values. The
calibration curves for thermal conductivity, thermal expansion and thermal diffusivity are
shown in FIGURE 3, 4 and 5 respectively.

SALIENT FEATURES

The salient features of this setup are: a) no need of cryogenic fluids to generate
cryogenic temperature, b) simultaneous measurement of thermal conductivity, thermal
expansion and thermal diffusivity under identical conditions, c) saving of experimental
time, d) easy and simple operation, e) portable, f) any material can be tested with minor
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modification of the setup and g) specific heat of the materials may be calculated from the
measured experimental values of thermal conductivity and thermal diffusivity thus
enthalpy and entropy could also be calculated. The simultaneous measurement gives the
advantage of rapidity of execution, the reduced sample handling time and the uniformity
about same physical conditions during measurements.

CONCLUSION

It is concluded that simultaneous measurements of thermal conductivity, thermal
expansion and thermal diffusivity of the composites at temperatures down to 30 K under
identical environment is possible using this integrated experimental setup.
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