高温投下型熱量計による熱含量測定と比熱の決定

岩手大·工学部 山口勉功

1.はじめに

1000K を越えるような高温度域での比熱,熱含量,相変化 熱などの決定法として,投下型熱量計を用いた熱量測定が ある。投下型熱量計は高温と室温間における物質のエンタル ピ - 変化量(熱含量)を測定するものであり,高温部に置かれ た試料を低温部(一般には室温)の熱量計中へ投入し,試料 の放出熱量を測定するものである。熱含量と温度の関係が分 かると,熱含量値の温度微分により定圧比熱が導出できるの で,断熱型熱量計,DSC,AC カロリメトリ - などによる直接測 定が困難となる高温域での比熱のほとんどが投下型熱量計 により決定されている。相変化前後における熱含量値から融 解熱や相転移熱なども決定できる。

投下型熱量計は,1)試料加熱系と熱量測定系が分離して いるため,高温への拡張が容易である,2)不連続な測定であ るため,精度を上げるためには測定回数を非常に多くする必 要があるが,連続測定でないため誤差の累積を避けることが できる,などの利点がある。しかしながら,精度の良い測定を 行なううえでは,次のような注意を払う必要がある。1)落下過 程において熱が輻射あるいは伝導により失われるため,試料 が周囲から受ける熱影響を考慮する必要がある,2)測定原 理上,落下過程において試料が急冷されるため,測定物質 によっては凝固時に結晶化の遅れやガラス化,固相変態の 遅延などを生じる場合がある,3)このため,X線回折などで測 定終了後の試料相の確認を欠かすことができない,4)高温 においては,試料の雰囲気や試料容器との反応が予想され, 試料の物性に応じた予防手段を講じる必要がある。

投下型熱量計を用いた熱含量測定に関しては古くから National Bureau of Standards (現 NIST)や Bureau of Mines における一連の研究がよく知られており,両機関の研究者に より解説書も書かれている。¹⁾²⁾また,Ames 研究所およびベ ルリン工科大学において 2000~3000Kの超高温領域におけ る各種耐熱材料の熱測定として応用されており³⁻⁶⁾,高温熱 測定の分野において投下型熱量計の占める重要性は揺ぎな いものとなっている。本稿では,投下型熱量計を用いた高温 熱量測定がどのようにして行われ,精度を向上させるために どうのような手段が講じられているのかについて,著者らの研 究を含め,最近の研究動向を紹介するとともに,比熱の導出 方法や熱含量測定の応用例などについても述べたい。

2.投下型熱量計

2.1 装置および測定方法

最近,筆者らは従来の 1500K程度まで稼動可能な投下型 熱量計⁷⁾を改良し,1850Kまでの高温化を施した装置の開発 を試みている。⁸⁾一例として,筆者らのシリコンの熱含量測定 に用いた装置の概略を Fig.1 に示す。基本構造は,加熱炉, 試料投入装置,熱量計,試料系から構成される。

加熱炉はカンタル社製のスパイラル形状のカンタルス - パ - (MoSi₂)を発熱体とし,アルミナレンガを敷き詰めた幅 370mm,高さ300mmのステンレス製の外枠に設置されている。 電源は6kW容量であり,約1kWの供給で1850K程度まで昇 温可能である。発熱体の内側には内径35mm,長さ600mm の高純度アルミナ管が反応管として用いられている。炉の均 熱帯(±1K)は500~1800Kの温度範囲において25mmであ る。

Fig.1. Construction of drop calorimeter.

試料投入装置は圧搾空気を用いて試料の投下を行うもの で,本装置において試料が熱量計本体の放熱室中に入るま では自由落下に近い速度で落下し,その後は落下速度を減 じるように空気量を調節して,放熱室の底より10mm高い位置 で試料が静止するようにしている。この操作により,試料容器 の破損を防ぐことができ,同一試料,同一容器を用いた繰り 返し実験が可能となる。本熱量計の昇降ストロ - クは約 870mm であり,試料容器の吊り線として直径 2mm の Pt-10%Rh合金線を用いている。700~1800Kの温度領域で1 年間使用した場合における吊り線の伸長率は 0.15%以下で あった。

熱量計本体は純水 3.4kg を入れた Dewar 瓶(内径 150mm, 深さ 340mm)および銅製の円筒形放熱室(内径 36mm,深さ 320mm,厚さ 1mm)から構成されており,熱平衡の到達を早 めるために放熱室の周囲には直径 120mm の銅製放熱板が

Fig. 2. Schematic diagram of sample assembly.

27 枚取り付けられている。熱量計の断熱性を保持し,熱量計 上部からの炉熱の影響を防ぐため,放熱室と加熱炉の反応 管との間には2重のシャッタ-が設けられている。熱量計の水 温変化は,撹拌機で水を撹拌(3 回転/秒)しながら白金抵抗 温度計により 0.001K まで読み取っている。本熱量計のエネ ルギ - 当量はアメリカ国立標準技術研究所(NIST)提供の - アルミナ標準試料(SRM 720)を用いた実験により 17.70± 0.22kJ·K⁻¹と決定されている。

試料容器として Fig.2 に示されるように透明石英製の円筒 状密閉容器(外径 18mm, 高さ 20mm, 厚さ 2mm, 質量 7.8g) が用いられ,試料は酸化,揮発を抑えるために真空封入され ている。シリコンの熱含量測定においては試料と石英の反応 が懸念されるため,窒化ホウ素(BN)製のルツボ(外径 14mm, 高さ15mm,厚さ1mm,質量1.1g)を石英容器の内側に装入 した2重容器を用いている。BNは熱的に高温まで安定であり, シリコンやアルミニウムおよびその合金との反応性は小さい。 石英容器は,真空密閉した場合,大気下において 1520K 程 度の温度で潰れてしまうので、1500Kを越えるような高温域で の使用は難しい。筆者らは, Fig.2に示したように, 円盤状のB N板(直径14mm,厚さ1mm,質量0.26g)をBNルツボの直上 に装入し、肉厚の石英容器を用いることで、1800K程度の高 温まで石英容器の破壊なしで試料容器を使用することができ た。試料容器は白金容器(外径20mm,高さ22mm,質量11g) 内に設置され,加熱炉の均熱帯部分に保持される。試料温 度は白金容器の真横に位置する Pt-Pt・13% Rh 熱電対により 測定している。

封入試料は加熱炉で保持し,熱平衡到達後,熱量計中へ 落下させ,熱量計水温の上昇を測定する。試料 1mol 当りの 熱含量は次式により算出される。

$$H_T - H_{298.15} = (Q - q)/m \tag{1}$$

ここで, Q は投入熱量, q は試料容器や吊り線など試料以 外の物質の熱含量, m は試料の物質量である。加熱炉から 熱量計本体に至るまでの試料投入時における輻射および対 流による熱損失が問題となるが,本測定においては熱損失の 補正を行なう必要はない。これは, 試料を用いた本実験と q を求める空容器実験で, 試料容器形状, 表面輻射率, 試料 の投下速度が等しい条件下にあるため, 投入時の熱損失が (1)式において相殺されるためである。 ー例として,著者らが投下型熱量計を用いて測定したシリ コンの熱含量値をFig.3 に示す。固体領域の熱含量は温度の 上昇と共に単調に増加し,融点で垂直に立ち上がる。さらに 温度が上がり,融体領域では熱含量値は温度に対して直線 に増加する。固相ならびに液体領域の測定値のバラツキは 確率誤差で,それぞれ±40,±140 J·mol⁻¹であった。融点に おける固相と液相の熱含量値の差が融解熱に相当し,本実 験結果では融点 1687±5K において 48.31±0.18kJ·mol⁻¹を 示した⁸⁾。

投下型熱量計の加熱炉,温度測定,熱量計,試料系については,従来,多くの研究者により測定の目的に応じて様々な工夫がなされているので,次に紹介したい。

Fig. 3. Heat content of silicon.

2.2 加熱炉

試料加熱炉は,目的温度を達成し,広い均熱帯を有する ことが重要である。1300K 程度の温度まではニクロムやカンタ ル巻線炉が用いられるが,1300K以上では極端に酸化しや すくなるので,これらの使用は難しい。1300~1800K の温度 域では白金(90%Pt-20%Rh)巻線炉が多く用いられ,炉心管 と試料の間にニッケルやグラファイトなどの円筒状のブロック を配置することで,炉の鉛直,水平方向の温度均一性をさら に高める試みもある。最近では,白金巻線炉に比べて安価な シリコニット(SiC)発熱体⁷⁾やケラマックス(LaCrO₃)発熱体を 用いた加熱炉も使用されるが,温度均一性では白金巻線炉

には及ばない。

1800 K以上の高温域になると,モリブデン抵抗加熱炉⁹⁾や, Levinson による使用最高温度 2800 Kの黒鉛抵抗加熱炉¹⁰⁾, Shpil'rain らによる最高温度 3000 Kの棒状タングステン¹¹⁾, Stout と Piwinskii による最高温度 2600 Kのタングステンメッシ ュヒ - タ - を用いた抵抗加熱炉¹²⁾などが使用される。これら の発熱体は高温では酸化しやすいので,不活性ガスや水素 ガスによる保護が必要となる。また,Leibowitsらによる2800~ 3000 K におけるチタンの熱含量測定¹³⁾は高周波炉を用いた 例としてよく知られている。

Fig. 4. Schematic drawing of the levitation calorimeter.

近年,浮揚溶解法(electro-magnatic levitation)を用いた投 下型熱量計により,高融点金属や希土類金属の液体の熱含 量や融解熱の測定が試みられている。浮揚溶解法は,高周 波電流の磁気作用を利用し導電性試料を空中に浮かした状 態で加熱,溶融するもので,1970 年,Ames 研究所の Margrave, Bautista らのグル - プにより投下型熱量計に採用 され³⁾、同グル - プによりチタン、パラジウム、イットリウム、ラン タンなどの溶融金属の熱含量測定⁴⁾,ベルリン工科大学の Frohberg らによりニオブ,モリブデン,タンタル,ハフニウムな どの熱含量と融解熱測定 500などが報告されている。最近, Frohberg が浮揚溶解炉を用いた投下型熱量計の 30 年間の 歩みについて纏めている¹⁴⁾ので参照されたい。Frohbergらの 浮揚溶解炉と等温壁型熱量計を組み合わせた投下型熱量 計⁵⁾の概略を Fig.4 に掲げる。本溶解法の最大の特徴は試料 の溶解のために試料容器を必要としないことであり,問題点 は、浮揚炉から熱量計に落下する間の対流と輻射による熱損 失 Q_tを正しく見積もる必要があることである。Q_tは次式を用い て算出できる。

$$Q_{\rm t} = A\varepsilon_{\rm h}\sigma t_{\rm D}(T^4 - T_{\rm u}^4) + A(T - T_{\rm u})\int_0^{t_{\rm D}} \alpha_{\rm c} {\rm d}t$$
(2)

ここで, σ は Stefan-Boltzmann 定数である。このように, 試料 表面積 A, 投下時間 t_D , 試料の周囲温度 T_u などのほかに, 表面放射率 h, 熱伝達係数 。などの実測デ - タの限られ ている試料の熱物性値を必要とするので,(2)式による熱損失の見積りは容易ではない。Stretz と Bautista¹⁵⁾は,溶融イットリウムの対流と輻射による熱損失量の算出を試みており,2360 Kから試料を落下させた場合,試料の熱含量 85704J・mol⁻¹に対する対流および輻射による熱損失を,それぞれ,490 および 3571J・mol⁻¹としている。

2.3 温度測定

温度の関数として得られる熱含量の測定において,温度 測定は加熱炉,試料系とならび重要である。一般に1750Kの 温度域までは Pt-Pt・13%Rh あるいは Pt・30%Rh-Pt・6%Rh 熱 電対が用いられる。この種の熱電対は頻繁に較正を行なうこ とにより,1373Kで0.3K,1773Kで2K以内の不確かさで温度 の測定が可能であると考えられている。1750Kを越える高温 度域では,単色や多色の放射温度計が用いられている。近 年,シリコンや GaInAs 半導体など性能の良いフォトダイオ -ドの開発,応用により放射温度計の性能は向上しつつある。 しかしながら,温度測定の不確かさは熱電対に比べて大きく, NIST の報告によれば,Leed&Northrup 8641 型の温度測定 の不確かさは 800 ~ 1600Kで4K,1600 ~ 2100Kで5K,1900 ~ 2300Kで7K,また Pyrometer Inst.95型では1400 ~ 1800 Kで4K,1800 ~ 2400Kで5K,2400 ~ 2700Kで8K,2700 ~ 3200Kで12Kとなっている。¹⁵⁾¹⁶⁾

熱電対,放射温度計いずれの温度計においても,投下型 熱量計を用いた実験では,測定が長時間にわたり,しかも, 繰り返しが予想されることから,温度計の較正をかなりの頻度 で行なう必要がある。温度計の較正法の詳細については解 説書¹⁷⁾¹⁸⁾にゆずるが,最近,Yamadaらは,高温における熱電 対,放射温度計の較正法としてFe-C(1426K),Ni-C(1602K), Pd-C(1765K),Rh-C(1930K),Pt-C2元系(2011K),Ru-C2元 系(2226K)の共晶温度の利用を提案している。¹⁹⁾この校正 法は,冷却速度を精度よく制御する必要があるが,カ-ボン 飽和下で較正が行なえるため試料容器としてカ-ボンをるつ ぼ材として利用することができる。

また, 試料を容器に封入する場合, 試料容器の熱伝導率が 温度測定の誤差の原因になることがある。すなわち, 熱伝導 率の良い試料容器は, 容器の表面温度と内部の試料温度が 平衡になりやすいが, そうでないものは容器の表面と試料の 間で温度勾配を有することがある。筆者らは純金属の熱含量 測定を行い, 融点を測定することで, 容器表面で測定される 温度計温度と試料温度の相違を確認している。⁸⁾

2.4 熱量計

熱量計本体としては,通常,等温型,等温壁型,断熱型な どの熱量計が用いられる。熱量計は試料放散熱の吸収媒体 の役割を果たし,適当な大きさのエネルギ - 当量と温度均一 性を有することが必要である。このため,熱伝導性の高い銅 などの金属ブロックが用いられることが多い。水は比熱が大き く,比熱の温度依存性が小さい,撹拌により温度均一化がし やすい,などの理由から,Fig.1 に示したように水も熱量の媒 体として用いられている。熱量計のエネルギ - 当量としては 6 ~ 10kJ·K⁻¹が一般的である。

無断転載ならびに一部のみの使用はご遠慮願います

等温壁型熱量計の利用は Southard²⁰によるものがよく知ら れている。等温壁型熱量計は,前述の各種加熱炉と組み合 わせて用いられることが多く,汎用性の高い熱量計である。一 例として,Blachnickら²¹⁾の等温壁型熱量計をFig.5 に示す。 熱量計は,直径120mm,高さ190mmの円柱状の銅ブロック, 測温用の白金抵抗温度計,熱量検定用のヒ-タ-から構成 されており,エネルギ-当量は7.4kJ・K⁻¹である。ブロック全体 は298.15Kに保持された恒温槽に浸されている。等温型熱量 計を用いた例としては,Furukawaら²²⁾や Ditmars 6²³⁾による 氷熱量計や Cordfunke²⁴⁾によるジフェニル・エ-テルを用い た熱量計がある。断熱型熱量計の利用は Grønvold²⁵⁾や Svendsen 6²⁶⁾のものがよく知られている。熱量計の温度測定 には水晶温度計や白金抵抗温度計がよく用いられる。

Fig. 5. Construction of isoperibol calorimeter.

2.5 試料系

試料系には, 試料と反応せず熱的に安定で機械的強度を 有することが必要とされる。投下型熱量計を用いた熱含量測 定では, 通常, 試料の熱含量を空容器の実験値との差し引き により測定する場合が多く, 試料容器の形状や表面放射率 が一定であることが要求される。また, 高温では試料の蒸気 圧や解離圧が大きくなるので, 真空ないしはヘリウム, アルゴ ンなどの不活性ガスを試料とともに容器中に封入し, できる限 り容器内の自由空間を小さくして試料の解離を防ぐことが重 要である。

石英容器は加工が容易であり,金属や硫化物などの容器 として適しているが,希土類金属,アルカリ金属,ハロゲン化 合物などとは反応するので,これらの測定には適さない。また, 前述したように真空密閉した場合,大気下において1520K程 度の温度で潰れてしまう。塩類や酸化物の測定では,白金, 白金 - ロジウム合金などの試料容器²⁷⁾²⁸⁾がよく用いられ,真 空中での電子ビ - ム溶接や不活性ガス中でのア - ク溶接な どにより試料が密閉される。タンタルは,希土類金属やアルカ リ金属など活性な試料に対して安定であるが,酸化し易いの で取り扱いに注意が必要である。この問題を避けるため,内 側にタンタル容器,外側に白金を用いた二重構造の密閉容 器²⁹⁾を用いた試みもある。2000Kを越えるような高温域では, タンタルのほかにモリブデンやタングステン¹²⁾¹³⁾の密閉型の 試料容器が用いられることも多い。

3.比熱の導出

高温における熱含量の温度表示の一般式は(3)式で書き表 される³⁰⁾が,(3)式において E=0 とおいた(4)式あるは C=0,E=0 とおいた(5)式が最も多く用いられている。

$$H_T - H_{298\,15} = AT + BT^2 + CT^3 + DT^{-1} + ET^{1/2} + I$$
 (3)

$$H_T - H_{298.15} = AT + BT^2 + CT^3 + DT^{-1} + I$$
(4)

$$H_T - H_{298.15} = AT + BT^2 + DT^{-1} + I$$
(5)

熱含量の表示式を温度で微分すると比熱値が得られる。熱 含量測定からの比熱の導出には,(3)-(5)式に基づいた近似 計算により算出されることも多い。

3.1 Shomate 関数

Shomate は,熱含量測定値を温度に対して円滑に適合さ せるだけでなく,高温比熱と常温比熱 *C*_{P.298.15} との整合性,熱 含量あるいは比熱の温度係数の導出,相変化熱の正確な決 定などを目的とした解析法を提案している。³¹⁾ この方法は, 熱含量測定値(*H*_T-*H*_{298.15})と既存の常温比熱を用いて書き表 される関数(Shomate 関数)値を算出し,温度に対してプロット するものである。

Shomate function
$$\equiv T[(H_T - H_{298.15}) - C_{P.298.15}(T - 298.15)]/(T - 298.15)^2$$
 (6)

高温における熱含量が(5)式を用いて書き表される場合,(7), (8)式が得られ,

$$C_P = \mathbf{A} + 2\mathbf{B}T - \mathbf{D}T^{-2} \tag{7}$$

Shomate function =
$$BT + D/(298.15)^2$$
 (8)

Shomate function-Tプロットの勾配から(7)式の係数 B が, T=0における切片の値から係数 D を求めることができる。また, (5) 式の係数 A および定数 I は, $H_{T}-H_{298,15}=0$, $C_{P}=C_{P,298,15}$ (T=298.15K)なる二つの境界条件を用いて算出される。

Fig. 6. Temperature dependence of Shomate function for silicon.

Fig. 7. Heat capacity of silicon

シリコンの熱含量結果を Shomate 関数で整理した結果を Fig.6 に, Shomate 関数で導出された固体の比熱および最小 二乗法で算出されたシリコンの比熱を Fig.7 に掲げる⁸⁾。

3.2 QLLR法

2次相転移など微少な熱変化を伴う相転移における比熱を 検出,評価するうえで,QLLR法(Quasi-local linear regression)³²⁾³³⁾による解析が有効である。QLLR法とは,熱含 量は狭い温度範囲では温度に対して直線で近似できると仮 定し,ある任意温度の熱含量デ-タから両隣2n点,合計 (1+2n)点を用いて直線近似を行い,その直線の傾きを任意 の温度における平均比熱とするものである。この操作を全て の熱含量デ-タに順次行い,比熱の挙動から相転移を検出 する。QLLR法と多項式近似により算出されたUO2の比熱を Fig.8に示す。³¹⁾UO2は2610Kに相転移温度を有しており, QLLR法を用いて算出された比熱は転移温度で大きな値を 示し,単純な熱含量の多項式近似では見落とされた相転移 が検出されている。

Fig. 8. Heat capacity values (**•**) of solid UO₂ obtained by applying QLLR and comparison with C_P results derived from regression analyses (- • -), (- - -) and (—).³²⁾

4.熱含量測定の応用

4.1 Third low method

基準温度 298.15 K および任意温度 7K における標準物質の ギブス自由エネルギ - ,エンタルピ - ,エントロピ - の相関は (9)式で書き表される。

$$-(G_T^{\circ} - H_{298.15}^{\circ})T^{-1} = S_{298.15}^{\circ} + (S_T^{\circ} - S_{298.15}^{\circ}) -(H_T^{\circ} - H_{298.15}^{\circ})T^{-1}$$
(9)

また,エントロピ - ,エンタルピ - と比熱 C_P,相変化熱 H_uの 関係は(10)-(12)式で書き表される。

$$S_{298.15}^{\circ} = \int_{0}^{298.15} (C_P / T) \mathrm{d}T$$
(10)

$$S_{T}^{\circ} - S_{298.15}^{\circ} = \int_{298.15}^{T_{tr}} (C_{P} / T) dT + \Delta H_{tr} / T_{tr} + \int_{T_{tr}}^{T} (C_{P} / T) dT$$
(11)

$$H_T^{\circ} - H_{298.15}^{\circ} = \int_{298.15}^{T_{\rm tr}} C_P dT + \Delta H_{\rm tr} + \int_{T_{\rm tr}}^{T} C_P dT$$
(12)

(11) - (12)式から明らかなように, G_T^0 は 298.15Kにける標準 エントロピ - と標準エンタピ - 値が知られていれば,投下型 熱量計により直接ないしは間接的に求められる C_P , H_{tr} ,熱 含量 (H_T - $H_{298.15}$)から導出することができる。この方法は third law method と呼ばれる。構成成分が複雑である,蒸気圧,解 離圧が大きい,蒸気種が複雑である,などの理由により,起 電力法,蒸気圧法などの常用法を用いて物質の G_T^0 を求める ことが困難な場合,投下型熱量計による熱含量測定より third law method に基づき G_T^0 を決定することが可能である。

4.2 熱力学解析法

1/T

熱力学解析法とは,混合体の熱含量デ - タから積分混合 自由エネルギ - ,活量などの熱力学量を導出するもので,単 純共晶系や単純な化合物生成系に適応できる。³⁴⁾任意温 度 7K,参照温度 Kにおけるエンタルピ - をそれぞれ H_T, H として,熱含量 J_Tを定める。

$$J_T = H_T - H_\theta \tag{13}$$

熱力学第2法則の適用により(14)式が導かれる。

$$T \int_{1/\theta}^{1/T} d(1/T) + H_{\theta} - TS_{\theta} = H_T - TS_T$$
(14)

(14)式は混合体(合金)および混合体の両成分(金属元素) いずれにも成立するので,A成分の組成がxなるA-B2元混 合体の積分混合自由エネルギ - 変化は次式で書き表され る。

$$\Delta G_{x,T}^{\min} = \Delta H_{x,\theta}^{\min} - T\Delta S_{x,\theta}^{\min} + T [\int_{1/\theta}^{1/T} J_{T,x} d(1/T) - x \int_{1/\theta}^{1/T} J_{T,A} d(1/T) - (1-x) \int_{1/\theta}^{1/T} J_{T,B} d(1/T)]$$
(15)

ここで , $\Delta H_{x,\theta}^{\min}$, $\Delta S_{x,\theta}^{\min}$ はそれぞれ K における混合熱と 混合エントロピ - を表す。Fig6.(a)の共晶系の場合 , 参照温

無断転載ならびに一部のみの使用はご遠慮願います

度 Kを共晶温度以下にとると、 $\Delta H_{x,\theta}^{\min}$, $\Delta S_{x,\theta}^{\min}$ はゼロとみ なすことができる。Fig6.(b)の化合物系の場合も、 Kを共晶 温度以下にとると $\Delta H_{x,\theta}^{\min}$, $\Delta S_{x,\theta}^{\min}$ は化合物の生成熱と生成 エントロピ - の値から求めることができる。したがって, 落下法 による J_T の測定から混合体の熱力学量を求めることが可能と なる。筆者らは, 蒸気圧が大きく常用法の適応が困難な Ga-As や Cd-Te2元合金系などの熱力学量の導出を熱力学 解析法により試みている。³⁵⁾

5.終わりに

本稿では述べなかったが,ガラス化しやすい物質の熱含 量測定として,Yokokawa ら³⁶⁾による transposed temperature drop calorimetry が考案されている。この方法は,室温から高 温に保持された Calvet 型の伝導型熱量計中に試料を落下さ せるもので,本稿で紹介した落下法とは全く逆の方法である。 1800Kまで稼動可能な Eyraud-Petit 型の双子示差型熱量計 ³⁷⁾を用いた例³⁸⁾もある。参考にして頂ければ幸いである。

耐熱材料,シリコン半導体,鉄鋼,フェロアロイなど 1700K を越える温度領域における物質の熱化学デ-タの必要性が 強調されており,高温域で稼動可能な投下型熱量計の開発 とその測定が望まれている。しかしながら,浮遊溶解炉を利 用した導電性の金属,合金の測定を除くと,高温域での測定 例は極めて限られている。この理由として,試料系,温度測 定などの実験技術的な困難さが原因になっている。また,高 温物質の熱伝導や輻射率など熱物性値も炉の設計,熱制御 などの実用上で極めて重要であるが,実測デ-タは限られて いる。高温における物性値の測定は困難であるが,熱測定関 連分野の研究者がこの分野に関心を持たれ,高温における 熱化学デ-タの測定・集積が進行することを望む。

文 献

- T.B. Douglas and E.G. King, Experimental Thermodynamics, Vol. 1, ed. J.P. McCullough, D.W. Scott, Butterworth, London, p. 293 (1968)
- D.A. Ditmars, Compendium of Thermophysical Property Measurement Methods 1, ed. K.D. Maglic, A. Cezairliyan, V.E. Peletsky, Plenum Press, New York, p.527 (1984)
- A.K. Chaudhuri, D.W. Bonnell, L.A. Ford and J.L. Margrave, *High Temp. Sci.*, 2, 203 (1970)
- 4) L.A. Stretz and R.G. Bautista, J. Chem. Thermodynamics, 7, 83 (1975)
- M. G. Frohberg and G. Betz, *Ber. Bunsenges. Phys. Chem.*, 87, 782 (1983).
- M. Rosner-Kuhn, K. Drewes, H. Franz and M.G. Frohberg, *Mat. Sci. Eng.*, A308, 60 (2001)
- Y.H. Lee and K. Itagaki, *Trans. Jpn. Inst. Metals*, 27, 987 (1986).
- K. Yamaguchi and K. Itagaki, J. Therm. Anal. Cal., 69,1059 (2002)
- 9) F. H. Spedding and D. C. Henderson, J. Chem. Phys. 54,

2476 (1971)

- 10) L.S. Levinson, Rev. Sci. Instr., 33, 639, (1962)
- 11) E.E. Shpil'rain, D.N. Kagan and L.S. Barkhatov, *High Temp. High Press.*, **4**, 605 (1972)
- N. D. Stout and A. J. Piwinskii, *High Temp. Sci.*, 15, 275 (1982)
- 13) L. Leibowitz, M.G. Chasanov, L.W. Mishler and D.F. Fischer, *J. Nucl. Mater.*, **39**, 115 (1971)
- 14) M. G. Frohberg, Thermochim. Acta, 337, 7 (1999)
- L. A. Stretz and R.G. Bautista, *Metall. Trans.*, 5, 921 (1974)
- G. Machin, B.C. Johnson, C. Gibson and R.L. Rusby, J. Res. Natl. Inst. Stand. Technol., 99, 731 (1994)
- 17) 日本化学会編 実験化学講座,第4版,4熱·圧力,丸善, (1992)
- 18) 日本熱測定学会編,熱量測定·熱分析ハンドブック·丸
 善,(1998)
- Y. Yamada, H. Sakate, F. Sakuma and A. Ono, *Metrologia*, 38, 213 (2001)
- 20) J.C. Southard, J. Am. Chem. Soc., 63, 3142 (1941)
- R. Blachnik, J. Besser, P. Wallbrecht and K. Dreyer, *Thermochim. Acta*, 271 85 (1996)
- 22) G.T. Furukawa, T.B. Douglas, R.E. McCoskey and D.G. Ginnings, J. Res. Natl. Bur. Std., 57, 67 (1956)
- D.A. Ditmars and T.B. Douglas, J. Res. Natl. Bur. Std., 75A, 401 (1971)
- 24) E.H.P. Cordfunke, Thermochim. Acta, 124, 285 (1988)
- 25) F. Grønvold, Acta Chem. Scand., 24, 1036 (1970)
- 26) S.R. Svendsen, F. Grønvold, and E. F. Westrum, Jr., J. Chem. Thermodyn., 19, 1009 (1987)
- 27) G.K. Johnson, I.R. Tasker, and D.A. Howell, *J. Chem. Thermodyn.*, **19**, 617 (1987)
- 28) D.R. Fredrickson and M.G. Chasanov, *J. Chem. Thermodyn.*, **5**, 485 (1973)
- 29) F.L. Oetting, J. Nucl. Mater., 105, 257 (1982)
- O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, 5th ed., Pergamon Press, New York, p.12 (1983)
- 31) C.H. Shomate, J. Phys. Chem., 58, 368 (1954)
- 32) G.J. Hyland and R.W. Ohse, J. Nucl. Mater. 140, 149 (1986)
- 33) J. Ralph, J. Chem. Soc. Fraday Trans., 83, 1253 (1987)
- 34) W. Oelsen, Arch. Eisenhüttenw., 26. 19 (1955)
- 35) K. Yamaguchi, K. Hongo, K. Hack, I. Hurtado and D. Neuschütz, *Mater. Trans. Japan Inst. Metal*, 41, 790 (2000)
- 36) S. Tamura, T. Yokokawa and K. Niwa, J. Chem. Thermodyn., 7, 633 (1975)
- 37) J.P. Bros, J. Less Com. Met., 154, 9 (1989)
- 38) H. Kleykamp, Netsu Sokutei, 27, 100 (2000)