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The evaluation of the coefficient of thermal expansion (CTE) from the observed temperature induced length changes 
becomes the more difficult the lower the final uncertainty of the CTE is desired. On a scale of nanometers the length as 
a function of the sample temperature clearly deviates from the linear approximation so that higher polynomials are used 
as fit functions to the measured data. From such polynomials of a certain degree the CTE can easily be evaluated 
according to its definition. In this paper it is demonstrated in which way the corresponding uncertainty of the CTE can 
be calculated in accordance with the GUM what is done on the basis of symbolic computation by means of 
MATHEMATICA‚. On the other hand, the arbitrariness of the choice of the polynomial order causes an additional 
uncertainty contribution as discussed in this paper. Examples are given to illustrate the mentioned problems. 
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1. INTRODUCTION 

Phase shifting interferometry, in combination with computer-based analysis of interference phase maps, has almost 
replaced traditional methods in interferometric length measurements and special attention was paid in order to reduce 
the measurement uncertainty [1, 2, 3]. In the case of thermal expansion measurements by interferometric length 
measurements the uncertainty of the length changes determined from the differences of the measured lengths could be 
reduced to the range of sub-nanometers [e.g. see 4]. However, the accurate extraction of the coefficient of thermal 
expansion (CTE) from such precise data requires a careful and critical analysis as outlined in this paper.  

There exist alternative definitions of the CTE as examined in [5]. The “true” CTE (also referred as thermal expansivity) 
is defined according to the following equation: 

1 dL

L dT
α = ⋅

 (1) 

This definition bases on the knowledge of the derivative term /dL dT  as a function of the temperature. Often the 
temperature dependence of the length, L , in the denominator is ignored because of its small influence so that α is 
calculated from: 

0

1 dL

L dT
α ≈ ⋅  (2) 

As an example, for a 100 mm steel gauge block (a ª 10-5 K-1), where L0 is assigned to the length at 20°C the difference 

between eq. 1 and eq. 2, ( )0 0L L Lα ⋅ − , amounts to ª 10-9 K-1 at the temperatures of 10°C or 30°C. If such 

differences are in the order of the uncertainty desired, it becomes essential to define the CTE according to eq. 1.  
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Considering a measured data set of { },i it l  (data points of temperature and length), an average CTE, avα , can be 

defined in the temperature interval { }1,i it t +  of neighbouring data points according to the difference quotient: 

( ) 1av i
i

i i

l
t

l t

∆α = ⋅
∆

,  (3) 

where ( )1
12i i it t t += + , ( )1

12i i il l l += +  and 1i i il l l+∆ = −  is the length difference corresponding to the temperature 

difference 1i i it t t+∆ = − . The limiting case 0it∆ →  leads to the definition of the CTE according to eq. 1. However, 

the uncertainty of the differential quotient increases dramatically. Therefore, another strategy is useful to obtain the 

derivative term /dL dT . It consist of a least square fitting procedure with respect to the data set { },i it l  resulting in a 

polynomial of the degree n which describes the length of a sample (e.g. gauge block) as a function of the temperature T: 

( ) ( ) ( ) ( )2

0 1 0 2 0 0...
nn

nL a a T T a T T a T T= + − + − + + − ,  (4) 

where 0T  is an arbitrary reference temperature, e.g. 20°C. Such polynomial can simply be used for the evaluation of the 

CTE according to: 

( )

( ) ( ) ( )
( ) ( ) ( )

1

1 2 0 0( )
2

0 1 0 2 0 0

...1

...

nn
nn

nn

n

a a T T a T TdL

dTL a a T T a T T a T T

−+ − + + −
α = ⋅ =

+ − + − + + −
  (5) 

n = 1 in eq.5 corresponds to a quasi constant CTE. However, n is larger than 1 as measurements reveal in general (e.g. 

see below). As it is obvious from eq. 5 the “true” CTE is not of the simple form ( )0 1 0 ...T Tα α+ − + . Only the 

approximate definition according to eq. 2 leads to this form. 

2. RESULTS AND DISCUSSION 

2.1 Calculation of CTE’s uncertainty 

As outlined above the thermal expansion coefficient is calculated on the basis of a polynomial 
( ) 2

0 1 2 ...n n
nL a a a aϑ ϑ ϑ= + + + + , where 0a  corresponds to the gauge block length at a certain temperature 0T  

(e.g. 20°C) and ( )0T Tϑ = − . Polynomials of a certain degree n can be obtained by least square fitting. Such fitting 

can easily be done numerically resulting in numerical expressions for the coefficients ia . However, it is impossible to 

calculated their uncertainties in accordance with the GUM, where sensitivity coefficients of the form k ia∂ ∂ϑ  are 

involved.  

An effective way of uncertainty evaluation is the use of symbolic computation by MATHEMATICA‚ (Wolfram 
Research, v. 5). The basic principle of the ”symbolic” fitting is the same as for the numerical fitting: the minimization of 

the 2χ . The difference consists in the fact that the measured data are replaced by symbols. Just in a final step the data 
are inserted into the symbolic expressions. This gives the possibility to calculate derivatives of the resulting coefficients 

in order to extract sensitivities as required by the GUM. In addition, in the calculation of 2χ  weighted addends can be 
used according to: 
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( ) ( )( )2
2

1

N
n

i i i
i

p l L
=

χ = ⋅ − ϑ∑ , (6) 

where N is the number of data points. The weights, ip , are numerical expressions assigned according to the 

uncertainties of the individual length and temperature measurements:  

( ) ( )( )22

1
i

i i re i

p
u l l u

=
+ ⋅ α ⋅ ϑ

, (7) 

where reα  is a rough estimate of the CTE, ( )iu l  is the uncertainty of the measured length and ( )iu ϑ  that of the 

temperature. 

The minimum of the 2χ  is obtained from the (symbolic) solution of the set of n + 1 equations: 

( )2 0 0...
k

k n
a

∂ χ = =
∂

, (8) 

resulting in symbolic expressions for the coefficients ka  of the polynomial fit. Dependent on the polynomial degree, 

the expressions ka  can be very voluminous. However, even very large expressions can be simply used for further 

computation in MATHEMATICA‚ and there is no need for a simplification. The uncertainties of the ka  are calculated 

according to: 

( ) ( ) ( )
2 2

1

N
k k

k i i
i i i

a a
u a u l u

l=

⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ∂⎪ ⎪= ⋅ + ⋅ ϑ⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ϑ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∑ , (9) 

what is in accordance with the GUM. An alternative way for the calculation of ( )ku a  is to transform the uncertainty 

of the temperature into an additional length uncertainty as already done in the definition of the weights (eq. 7). This 
approach leads to: 

( ) ( ) ( )( )( )
2

2 2

1

N
k

k i i re i
i i

a
u a u l l u

l=

⎧ ⎫⎛ ⎞∂⎪ ⎪= ⋅ + ⋅α ⋅ ϑ⎡ ⎤⎨ ⎬⎜ ⎟ ⎣ ⎦∂⎝ ⎠⎪ ⎪⎩ ⎭
∑ , (9a) 

Using eq. 5 the CTE is obtained from the differentiation 
( )nL  divided by 

( )nL . Again in accordance with the rules of the 
GUM, the uncertainty of the CTE can be obtained from: 

( ) ( )
2

0

n

k
k k

u u a
a=

⎧ ⎫⎛ ⎞∂ α⎪ ⎪α = ⋅⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭
∑  (10) 

In a final step the measured data { },i ilϑ  and their estimated uncertainties ( ) ( ){ },i iu u lϑ  can be inserted so that 

numeric expressions for ka  and ( )ku a  and therewith numeric functions of α and ( )u α  are returned.  
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2.2 Additional uncertainty contribution due to the arbitrariness of the fit polynomial  

The straight forward calculation of ( )u α  resulting in eq. 10 presumes that the temperature induced length changes can 

be described by a certain polynomial of the degree n. However, the functional relationship between the length and the 
temperature for a given material is not known on the nm-scale. Therefore, the choice of the polynomial degree in eq. 4 
is arbitrary. There is an unknown deviation of the material inherent CTE compared to the CTE obtained from eq. 5 

which can by far exceed ( )u α  obtained from eq. 10. This problem is demonstrated by an example which basis on 

simulated values of sample lengths at given temperatures. The following assumptions are made for the simulation:  

a sample of 0L a= = 0.197840 m at 0T = 20°C has a temperature dependent length which is given by a polynomial of 

the degree 2: 

2
0,simL a b c T Tϑ ϑ ϑ= + + = − , (11) 

where b a = 2.5554 ◊ 10-6 K-1 , c a = 4.58 ◊ 10-9 K-2 (these quantities base on [6] found for single crystal silicon). The 
corresponding CTE is obtained from eq. 1: 

( )2

2

1
sim b c

a b a c a

+ ϑα =
⋅ + ϑ + ϑ

 (12) 

and is approximately given by: 2sim b a c aα ≅ + ϑ  (eq. 2). A simulated data set { },sim sim
i ilϑ  is generated on the 

basis of eq. 11 according to the following definition: 

( )

( )2

Random NormalDistribution ,

Random NormalDistribution ,

sim
i i i

sim
i i i i

u

l a b c u l

ϑ ϑ ϑ

ϑ ϑ

⎡ ⎤= ⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= + +⎣ ⎦⎣ ⎦

 (13) 

where Ji denotes the deviation from 20°C for selected temperatures in the temperature range between 15°C and 25°C. 
The phrase Random[NormalDistribution[x,u(x)] ] means that normal distributed random values are generated, where x 
denotes the mean value and u(x) its standard deviation. A number of 11 temperatures seems appropriate (or even large) 
compared with the typical number of data points in a series of interferometric length measurements.  

For simplicity the uncertainties ( ) ( ){ },i iu u lϑ  are set to be identical at each data point in the simulations. Two 

different sets of values ( ) ( ){ },u u lϑ  are considered in the example:  

Set A: ( )u ϑ = 10 mK,  ( )u l = 10 nm  

Set B: ( )u ϑ = 1 mK,  ( )u l = 1 nm.  

The data related to these sets are labeled by A and B, respectively, in the following figures. Fig. 1 shows the simulated 
data (data points) together with solid lines representing the linear case (polynomials with n = 1) which virtually seem to 
fit to the data in A and B on a scale of µm. 
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Figure 1 Simulated data (data points) of the length change as a function of the temperature for case A (left, uncertainties: {10 mK, 
10 nm}) and for case B (right, uncertainties: {10 mK, 10 nm}). The straight lines represent linear fit polynomials.  

The deviations of the data points from the linear fits of Fig. 1 are shown on the top of Fig. 2A and B, respectively. In 
case B the systematic deviations (which exist by definition using eq. 11) become visible because of the low 
uncertainties ({1 mK, 1 nm}) what is not the case for A ({10 mK, 10 nm}). The other graphs show the deviation of the 
higher order fit polynomials (n = 2, n = 3) from the simulated data. The variance of the data specified in the graphs is 
calculated according to: 

( ) ( )( )2

1VARIANCE
( 1)

N
n

i i
i

l L

N n

ϑ
=

−
=

− +

∑
, (14) 

which is similar to the RMS but takes into account for the number of free parameters which is n + 1 for a polynomial of 
the degree n. This is important because of the relatively small number of data points, N, keeping in mind that a 
polynomial of the degree n = N  - 1 perfectly “fits” the data because it is the interpolating polynomial.  

  

Figure 2 Deviations of the data points of Fig. 1 from the fit polynomial of the degree n for case A (left, uncertainties: {1 mK, 1 nm}) 
and for case B (right, uncertainties: {1 mK, 1 nm})  

In the case of Fig. 2A ({10 mK, 10 nm}) the variance is almost unaffected by the choice of the polynomial degree and is 
similar compared with: 
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( ) ( )( ) ( )( )2 2

reu l u l l u= + ⋅α ⋅ ϑ� , (15) 

which results in 11.2 nm for the case A. Thus, in case A it is impossible to extract systematic information about the 
characteristics of the length as a function of the temperature. This is different in Fig. 2B where the variance is 
drastically reduced (from 9.1 nm to 1.4 nm) when n = 2 is used instead of n = 1 so that the case n = 1 can be 
discriminated. It should be pointed out again that the case n = 2 represents the functional relationship as set for the 
simulation (eq. 11). For n = 3 a slightly reduced variance is found in case B, whereas for both, n = 2 and n = 3, the 
variance is comparable with the value of 1.1 nm which results from eq. 15 for B ({1 mK, 1 nm}). Thus, n = 3 cannot be 
discriminated in case B (as, of course, in case A). 

In Fig. 3 for each case, A and B, the CTEs resulting from the linear fit polynomial (n = 1) according to eq. 5 is shown as 
solid line. The corresponding uncertainties obtained from eq. 9 are shown as dark grey regions around the solid lines in 
A and B. The dashed lines represents the actual CTE as defined in this simulation by eq. 12. For comparison the average 
CTE values obtained from the difference quotient of neighbouring data (eq. 3) are shown as points in Fig. 3.  

  

Figure 3 CTEs resulting from the linear fit polynomial (n = 1) according to eq. 5 (solid lines) and uncertainties obtained from eq. 9 
(dark grey regions around the solid lines) for case A and B. Dashed lines represent the actual CTE as defined by eq. 12. Data points 
indicate the average CTEs according to eq. 3.  

As can be seen in Fig. 3 A and B the evaluated uncertainties (dark grey regions) overlap with the actual CTE (dashed 

lines) only at the temperature 0T = 20°C. At other temperatures the deviation between the (constant) CTE and the actual 

CTE becomes large. This is important for case A where it is impossible to discriminate the value of n = 1 in the fit 
polynomial. Thus, in such case the amount of uncertainty evaluated from the linear fit polynomial is dramatically 
underestimated.  

Fig. 4 shows the CTE for the case A and B resulting from the fit polynomials using n = 2 according to eq. 5 (solid 
lines). The resultant uncertainties obtained from eq. 10 are shown as grey regions. n = 2 represents the functional 
relationship between the length and the temperature as assumed in the simulation via eq. 11. Therefore, it is remarkable 
that the actual CTE as defined in the simulation by eq. 12 (dashed lines) is covered by the uncertainties in both cases. 
This result was checked for various different random data sets according to eq. 13 (data not shown) and confirms that 
the uncertainties are calculated properly.  
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Figure 4 CTEs resulting from the fit polynomial using n = 2 according to eq. 5 (solid lines) and uncertainties obtained from eq. 9 
(grey regions around the solid lines) for case A and B. Dashed lines represents the actual CTE as defined by eq. 12. Data points 
indicate the average CTEs according to eq. 3.   

As already mentioned, the results shown in Fig. 4 are in good agreement with the assumed model, i.e. asim by eq. 12. 
However, this information, i.e. the degree of the polynomial, is not available in the case of actual measurements. 
Therefore, it is useful (especially in case B) to investigate n = 3. Fig. 5 shows the resulting CTE for case A and B as 
solid lines surrounded by light grey regions representing the corresponding uncertainties. The latter are clearly larger 
than in the case n = 2 (see Fig. 4). It is a general rule that the larger n the larger are the resulting uncertainties (via 
eq. 10). This can easily be explained by the increased number of parameters (n + 1) in the model and does not contradict 
to the fact, that the variance of the data as in Fig. 2 is typically reduced. 

  

Figure 5 CTEs resulting from the fit polynomial using n = 3 according to eq. 5 (solid lines) and uncertainties obtained from eq. 9 
(light grey regions around the solid lines) for case A and B. Dashed lines represents the actual CTE as defined by eq. 12. Data points 
indicate the average CTEs according to eq. 3.   

Fig. 6 summarizes the results shown in Figs. 3 - 5 and Tab. 1 lists the data for the three temperatures 15°C, 20°C and 
25°C. 
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Figure 6 Summary of the data shown in Figs. 3 - 5.  

A units: 6 110 K− −  

T / °C ( )1α  ( )2α  ( )3α  

 

simα  

( )(1)u α  ( )(2)u α  ( )(3)u α  

15 2.5096 2.5584 2.5178 2.5749 
  0.0054 0.0201 0.0592 

20 2.5554 2.5584 2.5584 2.5406 
  0.0054 0.0054 0.0139 

25 2.6012 2.5584 2.5990 2.6562 
  0.0054 0.0201 0.0592  

B units: 6 110 K− −  

T / °C 
( )1α  ( )2α  ( )3α  

 

simα  

( )(1)u α  ( )(2)u α  ( )(3)u α  

15 2.5096 2.5554 2.5082 2.5151 
  0.0005 0.0020 0.0059 

20 2.5554 2.5554 2.5554 2.5533 
  0.0005 0.0005 0.0014 

25 2.6012 2.5554 2.6027 2.6096 
  0.0005 0.0020 0.0059  

  

Table 1 Listing of the CTEs resulting from the fit polynomial using n = 1, 2 and 3 according to eq. 5 and uncertainties obtained from 
eq. 10 for case A and B for the temperatures 15°C, 20°C and 25°C. asim denotes the actual CTE as defined in the simulations by 
eq. 12.   

Fig. 6 separately lists the uncertainties of the CTEs according to eq. 10 for n = 1, 2 and 3 in case A and B. In addition 
the differences between CTEs obtained from the polynomials of different degree are shown (solid lines).  

  

Figure 7 CTE-uncertainties according to eq. 10 for n = 1, 2 and 3 in case A and B together with the differences between CTEs 
obtained from the polynomials of different degree.   
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In case A it is obvious that the deviation 
( ) ( )2 1α − α  is up to almost one order of magnitude larger than the estimated 

uncertainty obtained from eq. 10 for n = 1. Therefore, since ( )2α  in principle represents simα  (see Tab. 1), the actual 

uncertainty of the CTE is dramatically underestimated when it is identified with ( )( )1u α . This situation is even worse in 

case B, however, n = 1 could be ruled out in this case (see Fig. 2). Continuing with case A, Fig. 7 shows that also the 

difference ( ) ( )3 2α − α  is clearly larger than ( )( )2u α . Thus, ( )( )2u α  obtained from eq. 10 for n = 2 can also not be 

identified with a reliable uncertainty in case A. This situation is again the same in case B.  

As an attempt for the estimation of a total uncertainty the deviation 
( ) ( )1n n+α − α  is taken as a additional uncertainty 

contribution according to: 

( )( ) ( )( )( ) ( ) ( )( )2 21n n n n
totalu u +α = α + α − α  (16) 

Fig. 8 A shows ( )1α  according to eq. 5 (solid lines) together with its uncertainty totalu  according to eq. 16. It is 

noticeable in case A that ( )1
totaluα ± does not quite cover simα  (indicated by the dashed line). However, this situation 

does not contradict to any assumption since totalu is a standard uncertainty (about 68% probability). For other random 

data sets (not shown) 
( )1

totaluα ±  typically covers simα . Although the case n = 1 can be excluded in case B, for the 

sake of completeness Fig. 8 B shows 
( )1

totaluα ±  for that case. 

  

Figure 8 CTEs for n = 1, i.e. 
( )1α (solid lines) together with their total uncertainties according to eq. 16 for the case A and B. Dashed 

lines represents the actual CTE as defined by eq. 12. Data points indicate the average CTEs according to eq. 3.  

Fig. 9 shows ( )2α  according to eq. 5 (solid lines) together with the uncertainties totalu  for n = 2 according to eq. 16 for 

the case A and B. In both cases 
( )2

totaluα ±  cover the data of simα  (indicated by the dashed line). Tab. 2 shows the 

values of 
( )1α , 

( )2α  and totalu  from Fig. 8 and Fig. 9  at the temperatures 15 °C, 20 °C and 25 °C for the two cases A 

and B, respectively.  
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Figure 9 CTEs for n = 2, i.e. ( )2α (solid lines) together with their total uncertainties according to eq. 16 for the case A 
and B. Dashed lines represents the actual CTE as defined by eq. 12. Data points indicate the average CTEs according to 
eq. 3.  

A units: 6 110 K− −  

T / °C ( )1α  ( )2α   

 

simα  

( )(1)u α  ( )( 2)u α   
15 2.5096 2.5584 2.5178  

  0.0410 0.0606  
20 2.5554 2.5584 2.5584  

  0.0054 0.0186  
25 2.6012 2.5584 2.5990  

  0.0410 0.0606   

B units: 6 110 K− −  

T / °C 
( )1α  ( )2α   

 

simα  

( )(1)u α  ( )(2)u α   
15 2.5096 2.5554 2.5082  

  0.0473 0.0072  
20 2.5554 2.5554 2.5554  

  0.0005 0.0022  
25 2.6012 2.5554 2.6027  

  0.0473 0.0072   
  

Table 2 Listing of the CTEs resulting from the fit polynomial using n = 1, 2 and 3 according to eq. 5 and uncertainties obtained from 
eq. 9 for case A and B for the temperatures 15°C, 20°C and 25°C. asim denotes the actual CTE as defined by eq. 12.   

3. CONCLUSIONS 

The accurate extraction of the coefficient of thermal expansion (CTE) from measurements of the absolute length as a 
function of the temperature by interferometry requires a careful and critical analysis. A so called “true” CTE (also 
referred as thermal expansivity) can be evaluated assuming a polynomial fit to the data. There exists a very effective 
way of uncertainty evaluation in accordance with the GUM using symbolic computation. However, the degree n of the 
polynomial, i.e. the type of the functional relationship between the length and the temperature for a given material, is 
not known on the nm-scale. Therefore, the choice of the polynomial degree n is arbitrary and there is an unknown 
deviation of the material inherent CTE compared to the CTE obtained from the polynomial fit. Such deviation is 
demonstrated by means of a simulated data set generated on the basis of an example polynomial (n =2) for two different 
cases of uncertainties. In the case of lower uncertainties ({1 mK, 1 nm}) the systematic deviations of the data points 
from the linear fits is clearly visible so that n = 1 can be discriminated. This is different in the case of the larger 
uncertainties ({10 mK, 10 nm}) where the variance of the deviation of the data from the fit is almost unaffected by the 
choice of the assumed polynomial order. In such case it is impossible to extract systematic information about the 
characteristics of the length as a function of the temperature so that the amount of uncertainty evaluated considering a 
linear fit polynomial is dramatically underestimated. As a suggestion for the estimation of a total uncertainty, the 

deviation ( ) ( )1n n+α − α  can be taken into account as an additional uncertainty contribution. 
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