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Abstract 

The in-plane and in-depth thermal conductivities of epoxy-carbon fiber composites have been 
measured at 77 K and 300 K. The experimental technique rests on the hot disk method. The 
two thermal conductivities as well as the thermal contact resistance between the probe and the 
composite materials are estimated from measurement data and an analytical heat transfer 
model within the experimental configuration. The results obtained at 77 K explained well the 
ignition test results performed on the composites at 77 K with regards to liquid oxygen 
storage. 
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I. Introduction 

The satellite launchers technology with liquid or hybrid propulsion needs very light devices 
including the cryogenic tank that are one of the most part of the complete system. Whereas 
metals were extensively used as tank materials1,2, the composite technology appears more 
promising but also raises new technological challenges. The main one is related to its 
compatibility with the liquid propellant. The ignition and combustion of the carbon-epoxy 
material in contact with the liquid oxygen3 is a part of this challenge. The oxygen tank 
pressure4, the oxygen concentration5,6,7, and temperature8 are keys parameters in the ignition 
and combustion processes. Temperature increase can be originated from multiple phenomena 
as: a particle impact1, a fast liquid compression9, friction1 between liquid and solid wall or 
mechanical resonance due to vibrations1. The main drawback of composites is their low 
performance with respect to combustion. The process of polymer matrix decomposition is the 
major factor to trigger the ignition. However the fiber is also highly responsible in the heat 
transfer within the heating area. Gerzeski10 found that most of metallic materials (aluminium 
alloys, nickel) satisfies the mechanical impact test due to their high thermal conductivity at 
temperature of -196 ° C (77K). This has led to the development of composite materials with 
the same resin, and different fibers10,11,12. Therefore, composites capable of meeting the 
compatibility liquid oxygen standard must have high ignition temperature of the resin and a 
high in-plane thermal conductivity of the composite, and therefore of the fiber. 

This study focuses on the thermal conductivity measurement of three composites constituted 
from the same epoxy resin (5052-4 RTM BMI) and different carbon fibers, namely the XN15, 
YSH70 and CN90 manufactured by the Nippon Graphite Fiber Corporation. Each composites 
samples are removed from a plate in the form of cylindrical samples of R=1.5 cm and 
thickness e=3 mm. Each sample is constituted from the same number of folds (about 40) and 
the process leads to orientate the fibers in the [0/+45/-45/90] directions, which allows to 
assume homogenous in-plane properties. The measured density of the fibers is reported in 
Tab. 1. As reported in the paper of Reed and Golda14, epoxy resins contract from 0.85 to 1.2 
% on cooling from 300 to 4K. Therefore, the density will be further considered as a constant 
on the [300-77] K temperature range and equal to 1210 kg.m-3. On the other hand, the 
coefficient thermal expansion in the same temperature range is lower than 0.5x10-6 K-1. 
Therefore, the fiber density will be also considered as a constant. The measured composite 
density differs than less 4% from the calculated value starting from the fiber volume fraction. 
It means that the volume fraction is slightly overestimated than the real value. As reported in 
13,14, the specific heat of epoxy is 1110 J.kg-1.K-1 at 300 K and it is about 380 J.kg-1.K-1 à 77 
K. In addition, the specific heat of graphite is15 644 J.kg-1.K-1 at 300 K and it is 109 J.kg-1.K-1 
at 77 K.  
The specific heat of the composite has been measured at 300 K and it is calculated starting 
from the fiber volume fraction f. The results are reported in the first row of Tab. 2. A very 
slight difference (less than 2%) appears that comes, as also reported for the density, from a 
very small overestimation of the fiber volume fraction. The specific heat of the composite at 
77 K is then calculated starting from the values for the carbon fiber and the resin at that 
temperature and also from the fiber volume fraction with 2% correction term. Results are 
reported in the second row of Tab. 2. 
The in-plane 

  
k!  and in-depth  k⊥  thermal conductivities are measured at 77 K and 300 K 

using the hot disk technique. The thermal resistance Rc at the interface between the probe and 
the material is a key parameter that needs also to be identified as well as for the heat capacity 



of the probe. An inverse technique is implemented that lead to identify the unknown 
parameters based on experimental data and a heat transfer model consistent with the 
experiment. For information16,17, the longitudinal thermal conductivity of the fibers at 300 K 
is reported in Tab. 1 and the thermal conductivity kr of the epoxy resin is 0.1 W.m-1.K-1 at 77 
K and it is 0.25 W.m-1.K-1 at 300 K. 
 

Composite 
Fiber density 

(kg.m-3) 
@300K/77K 

Fiber 
longitudinal 

thermal 
conductivity 

kf (W.m-1.K-1) 
@300K 

Fiber 
volume 

fraction f 
Composite 

density (kg.m-3) 
@300K 

Meas./Calc. 

XN15/Epoxy 1850 3.2 0.568 1516/1573 
YSH70/Epoxy 2150 250 0.586 1783/1760 
CN90/Epoxy 2190 400 0.609 1788/1807 

Tab. 1. Measured density of the fiber at 300 K and 77 K, measured thermal conductivity of 
the fiber at 300K and measured composite density at 300 K with comparison with the 
calculated one. 
 

T0 [K] XN 15/epoxy YSH 70/epoxy CN 90/epoxy 
300 

(measured/calculated) 
836/845 829/836 817/826 

77 (calculated with 
2% correction on f) 

232 228 219 

Tab. 2. Measured/calculated specific heat in [J.K-1.kg-1] of the three composites at 300 K. 
Calculated value at 77 K with 2% correction term coming from the fiber volume fraction 
overestimation. 
	
  
II. Thermal conductivity measurements 

In-plane and transverse thermal conductivity of the composite are measured using a hot probe 
type method known as the hot disk technique18,19,20,21. The sensor is made of nickel foil in the 
form of a bifilar spiral covered on both sides with an insulating layer of Kapton. The 
thicknesses of the foil and the Kapton layer are 10 and 25 µm, respectively, the effective 
diameter of the bifilar spiral is and the radius of the heating area is 20 mm. 

The thermal sensor is placed between two pieces of the sample material and is then heated by 
a constant electrical current i. The probe constitutes both heat source and temperature sensor. 
The time-dependent resistance of the thermal probe sensor element, during the transient 
recording, is expressed as: 

   (1) 

where R0 is the resistance of the probe element at the initial temperature ,   is the 
temperature coefficient of resistance (TCR) that is calibrated prior to the experiment and 
ΔT(t) is the temperature increase of the probe during the heating.  

The probe resistance R0 and TCR α have been accurately measured for the temperature range 
of interest and data are reported in Tab. I. 

r0 = 3.189mm

R t( ) = R0 T0( ) 1+α T0( )ΔT t( )( )

T0 α T0( )



Classical assumptions are that the heat flux related to the Joule’s effect is uniform all over the 
probe area at each time t during the experiment and that it is measured the average 
temperature  of the probe. 

T0 [K] R0 (T0) [Ω] α(T0) [K-1] x 10-3 
77 1.049 11.593 
300 5.313 5.098 

Tab. 3. Probe resistance and TCR at 77 K and 300 K. 

To record the potential difference variations at the sensor, which normally are of the order of 
a few millivolts during the transient recording, a bridge arrangement is used in order to have a 
current i holding constant through the probe. 

Heat diffusion in the sample rests on the classical linear heat diffusion equation in cylindrical 
coordinates. Heat flux  is imposed at one face of the sample by the thermal 
probe, whereas the temperature at the other face is maintained at the constant value T0. It is 
finally assumed that the circumference area is perfectly insulated. 
Using the experimental symmetry, it is allowed to consider only one of the two samples 
located at both sides of the thermal probe. Applying the Laplace transform on the time 
variable and the Hankel transform on the radial coordinate, an analytical expression for the 
spatial average sensor temperature  is found as: 

   (2) 

In this relation p denotes the Laplace variable and  is the inverse Laplace transform 
that is calculated from the de Hoog algorithm. The transfer function Z(p) is given by : 

  , (3) 

where Cs is the probe heat capacity that leads to a delay in the thermal response and Rc is the 
thermal contact resistance at the interface between the probe and the sample. Function F(p) is 
given by: 

  , (4) 

where   and  are the modified first and second order Bessel functions and: 
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And: 

   (7) 

In addition of the two thermal conductivity 
  
k!  and  k⊥ , the probe capacity Cs and the thermal 

resistance Rc at the probe-sample interface are unknown. In order to assess the identification 
feasibility, the dimensionless sensitivity functions  for the four 

parameters 
   
θ = k! ,k⊥ , Rc ,Cs

⎡⎣ ⎤⎦   are calculated and plotted in Fig. 1.  

 
Fig. 1. Dimensionless sensitivity for 

  
k! ,  k⊥  , Rc and Cs according to  (

  
ar = k! ρCp ). 

Numerical values for this simulation are: R=1.5 cm, e=3mm, 
   
k! = 100 W.m-1.K-1  , 

  k⊥ = 3W.m-1.K-1  ,   Rc = 10−4 K.m2.W-1 ,   Cs = 20 J.K-1.m-2 . 
 
The sensitivity functions for the two thermal conductivities are not fully linear dependant (as 
also demonstrated by plotting their ratio in the inset of the figure). The sensitivity for Cs is 
close to zero on the quasi-total time range. Finally the sensitivity of the Rc varies only at the 
short times and then remains constant. As represented in the inset of the figure, the sensitivity 

an =

0 if n = 0

π n + 1
4

⎛
⎝⎜

⎞
⎠⎟ −

3

8π n + 1
4

⎛
⎝⎜

⎞
⎠⎟ R

if n = 1,2,3,...

⎧

⎨
⎪
⎪

⎩
⎪
⎪

Xθ t( ) = θ dT t( ) dθ⎡⎣ ⎤⎦

art R
2



functions for 
  
k!  and Rc are linear independant only at the first instants, which requires 

identifying both parameters separately considering the first part of the data. 
Therefore, Cs is measured from an experiment with the probe alone at the two investigated 
temperatures (330 K and 77 K), for a given time step. It is found   Cs = 26 ± 0.5 J.K-1.m-2  at 

300 K and   Cs = 20 ± 0.5 J.K-1.m-2  at 77 K and it is assumed that those values do not change 
significantly when the probe is inserted between both parts of the composite. In practice, the 
heating duration will be chosen so that the ratio

  
X k!( ) X k⊥( )  

does not become constant (see 

inset in Fig. 1), i.e., the in-plane heat diffusion length (
   
∼ 2 t k" / ρCp ) does not exceed the 

sample radius R. 
 
III. Results 
 
The sampling time interval is noted  Δt  and the number of data is N for the duration of the 
experiment. The four parameters have been identified minimizing the objective function 

  
J = ε i

2

i=1

N

∑ = Yi −Ti( )2

i=1

N

∑ , i.e., the quadratic difference between the measured temperature 

 Yi = Y iΔt( )  and the simulated one  Ti  obtained from relation (2). The minimization is 
achieved using the Levenberg-Marquardt algorithm. Results are reported in Tab. II. The 
measured temperature and the simulated one starting from the identified parameters are 
plotted in Fig. II. 
The fit between measures and simulations is almost perfect; the residuals are low with a white 
noise featuring (the auto-correlation function being close to a Dirac function). The value of 
the objective function at the end of the identification process is less than 10-5 and the residuals 
do not reveal a bias in the heat transfer model. The standard deviations for the identified 

parameters are classically calculated from 
   
σθ = XT X( )−1

σ
T

2 	
  with 

   
X = X k!( ) X k⊥( ) X Rc( ) X Cs( )⎡

⎣⎢
⎤
⎦⎥

 where  X θ( )  denotes the sensitivity vector, of 

length N, for 
   
θ = k! ,k⊥ , Rc ,Cs

⎡⎣ ⎤⎦ . Furthermore, the noise standard deviation is approximated 

from the value of the objective function   Jmin  at the end of the identification process as: 

  
σ

T
2 = Jmin N . 

 
XN 15/epoxy 

T0 [K]   
k!  [W.m-1.K-1]  k⊥  [W.m-1.K-1] Rc [m2.K.W-1] 

77 0.479± 0.051 0.203 ± 0.005 (5.231± 0.210)x10-4 
300 1.794± 0.030 0.886 ± 0.004 (4.409± 0.100)x10-4 

YSH 10/epoxy 
77 28.02 ± 0.25     0.168 ± 0.020 (1.400 ± 0.10)x10-4 
300 152.78± 0.90 0.456 ± 0.020 (3.699 ± 0.30)x10-4 

CN 90/epoxy 
77 49.85 ± 0.91   0.324 ± 0.035 (4.032 ± 0.10)x10-4 
300 230.22± 1.20   0.602 ± 0.030 (4.429 ± 0.20)x10-4 



Tab. 4. Identified In-plane and transverse thermal conductivity and thermal resistance at the 
interface between the material and the probe. 
 

  

  
Fig. 2. First row: measured temperature  Y t( )  during the transient hot disk experiment and 

simulated temperature  T t( )  with identified parameters reported in Tab. 4 at 77 K and 300 K. 

Second row: residuals  ε t( )  . 

IV. Conclusions 
 
The measured In-plane thermal conductivity of the three composites follows well the carbon 
fibre longitudinal thermal conductivity at room temperature. Obviously, the epoxy resin being 
less conductive than the fibre, the composite thermal conductivity is lower than that of the 
fibre itself. Using the classical mixing law for the in plane thermal conductivity it is found the 
theoretical value as: 

   
k! = f k f + 1− f( )kr . Using the fibre volume fraction, the longitudinal 

thermal conductivity of the fibre at 300 K in Tab. 1 and that of the resin at 300 K, we found 



the theoretical value of 
  
k!  for the three composites at 300 K as: 

   
k!

th = 1.925W.m-1.K-1  for the 

XN15/epoxy, 
   
k!

th = 146.6W.m-1.K-1  for the YSH10/epoxy and 
   
k!

th = 243W.m-1.K-1  for the 
CN90/epoxy. These values are consistent with the measured ones reported in Tab. 4. Using 
the measured values at 77 K, it comes that the thermal conductivity of the carbon fiber can be 
estimated from the previous mixing law and the epoxy thermal conductivity at 77 K. We 
found:   

kXN15,77K = 0.76W.m-1.K-1 , 
  
kYSH70,77K = 47.74W.m-1.K-1  and   

kCN90,77K = 81.77 W.m-1.K-1 . 
Ignition test realized on the three composites showed that only the CN90/epoxy passed the 
test. This suggests that the thermal conductivity of carbon/epoxy material for liquid oxygen 
storage purpose must be equal or greater than 

   
k!

min = 50W.m-1.K-1 . 
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