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Background
• Events of 9/11 and subsequent WTC investigation have 

highlighted the importance of fire resistive materials (FRMs) in
their role of limiting the temperature rise of structural steel

• WTC investigation demonstrated the possibility to connect fire to 
structural models via a thermal performance model for the 
FRM/steel

• R&D project on FRMs included in the Safety of Threatened 
Buildings program
– Objective is to apply materials science to understanding and

improving FRM performance
• Develop linkages between microstructure and performance 

properties such as adhesion and thermophysical properties
– One activity has been the development of a methodology for 

characterizing FRMs and (steel) substrates with respect to 
thermal performance models (inputs needed)



Outline

• Energy Transfer from Fire to FRM
• Thermophysical Properties of FRM
• Thermal Performance Simulations

– Slug calorimeter experimental setup



FRMs and Energy Transfer
• FRMs are specified to limit (slow) the energy transfer from a potential fire to 

the substrate (most often structural steel) that they are protecting
• Energy transfer from fire to substrate controlled by

– Radiative and convective transfer from the fire to the exposed FRM surface
– Transfer rate through the FRM

• Thermal conductivity of FRM
– Energy absorption/generation of the FRM

• Heat capacity and density of FRM
• Enthalpies of phase changes, reactions, etc. within FRM

– Other concerns
• Mass transfer (steam, hot reaction gases)
• Damage/cracking (preferential pathways)
• Expansion (intumescents)

Fire Resistive Material
(k, Cp,ρ, ΔHrxn)

Steel
(k, Cp,ρ)



Energy Transfer from Fire to Surroundings

• Typically characterized by two terms
– Convection term

h(Tfire-Ts)
– Radiation term

σAε(T4
fire-T4

s)

• Can be simulated in great detail by BFRL 
Fire Dynamics Simulator (FDS), for 
example
– http://www.fire.nist.gov/fds/

http://www.fire.nist.gov/fds/


Energy Transfer through the FRM

• Basic equation for unsteady-state heat 
conduction 
– For example, from J.P. Holman, Heat 

Transfer, McGraw-Hill,  New York 1981, 
with no reactions.
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α indicates the thermal diffusivity 
and is given by k/ρCp



Energy Transfer through the FRM
• Equation from the previous slide can be solved, 

numerically for instance, if:
– Boundary conditions are known

• Surface temperature
– From energy transfer from fire or furnace

• Interior boundary condition
– Adiabatic at center line of symmetrical samples, for example

» Slug calorimeter plate (center)
» Beam or column (center)

– Thermophysical properties are known
• Density
• Thermal conductivity
• Heat capacity
• Heats of reactions and phase changes



Thermophysical Properties
• Density, heat capacity, heats of reaction/phase 

changes, and thermal conductivity
• NIST proposed methodology:

– Bentz, D.P., Prasad, K.R., and Yang, J.C., “Towards a 
Methodology for the Characterization of Fire Resistive 
Materials with Respect to Thermal Performance 
Models,” Fire and Materials, 30, 311-321, 2006.

– Updated recently in: Bentz, D.P., Prasad, K.R., 
“Thermal Performance of Fire Resistive Materials I. 
Characterization with Respect to Thermal Performance 
Models,” NISTIR 7401, U.S. Department of Commerce, 
2007. 



Thermophysical Properties
• Density

– Initial mass and mass loss vs. temperature (from TGA)
– Initial dimensions and expansion factor (for 

intumescents)
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Thermophysical Properties
• Options for heat capacity

– Direct computation from mixture composition 
and heat capacities of component materials

– DSC or STA measurement
• Small sample size (inhomogeneity, mass change)

– Transient thermal exposure
• Thermal diffusivity-type measurement
• Volumetric heat capacity from transient plane 

source measurement (e.g., Hot Disk® at NIST)



Thermophysical Properties

• Does one need to characterize heat 
capacity vs. temperature or does a room 
temperature measurement suffice?
– Answer: It depends

• Purposes and desired level of accuracy
• For most FRMs, change in Cp from 23 °C to 1000 °C is 

less than 20 % (and may be less than 10 %)
• Thermal mass of FRM may be much less than that of the 

substrate it is protecting
– For example, in a typical slug calorimeter experiment, 

mass of slug is more than 5 times greater than the sum of 
the “twin” FRM specimen masses



Thermophysical Properties

• Heats of Reactions
– Compute from measured mass loss data (TGA) 

and theoretical (computed) heats of reaction for 
assumed reactions

• Evaporation of “free” water
• Dehydration of gypsum

– Gypsum hemihydrate
– Hemihydrate anhydrite

• Dehydration of portland cement
– Dehydration of C-S-H gel
– Dehydration of calcium hydroxide

• Decarbonation



Thermophysical Properties
Reaction Assumed temperature 

range for mass loss
Assumed 
reaction

temperature

Computed Enthalpy
(kJ/kg product)

Evaporation of free water 25 °C to 100 °C 75 °C 2328 kJ/kg water

Dehydration of “C-S-H” 100 °C to 300 °C
or

100 °C to 400 °C

125 °C 1438 kJ/kg water

First dehydration of gypsum to 
hemihydrate

100 °C to 200 °C 150 °C 3007 kJ/kg water

(2nd) dehydration of hemihydrate 
to anhydrite

200 °C to 450 °C 325 °C 2339 kJ/kg water

Dehydration of calcium hydroxide 300 °C to 600 °C
or

400 °C to 600 °C

450 °C 5660 kJ/kg water

Decarbonation of calcium 
carbonate

600 °C to 1000 °C 
or

450 °C to 1000 °C

750 °C 3894 kJ/kg CO2



Thermophysical Properties
• Heats of reaction

– Computed enthalpy for reaction multiplied by 
measured mass loss gives enthalpy change for 
material
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Thermal Conductivity at High Temperatures
• How to measure it?

– ASTM C1113: Hot wire method
• Difficult to maintain contact with porous FRM specimens
• No information on influences of reactions, phase changes, etc.

– High-temperature guarded hot plate 
• Steady-state method (no info on reactions, etc.)
• State-of-the art facility under construction in BFRL at NIST

– Transient plane source method (Hot Disk®)
• Unit with furnace (test up to 700 oC) at BFRL

– Slug calorimeter (designed and built at BFRL in 2004 and  used 
extensively since then)

• Similar in principle to the Cenco-Fitch Apparatus used in ASTM 
D2214 for estimating the thermal conductivity of leather (first 
published by Fitch in 1935) and in approach to ASTM E457 for 
measuring heat-transfer rates using a thermal capacitance transducer

• Currently being standardized in ASTM E37.05 (Thermophysical 
Properties)  --- submitted to subcommittee ballot in Jan. 2007

• Using multiple heating/cooling scans provides valuable information on 
the influences of reactions, phase changes, and mass transfer



Slug Calorimeter Technique
• Sandwich specimen consisting of two “slabs” of FRM 

covering two sides of a steel slug of known mass 
and heat capacity

• Monitor slug temperature change as entire sandwich 
is exposed to a heating/cooling cycle

• Calculate effective thermal conductivity during 
multiple heating/cooling cycles

• For detailed information see: Bentz, D.P., Flynn, 
D.R., Kim, J.H., and Zarr, R.R., “A Slug Calorimeter 
for Evaluating the Thermal Performance of Fire 
Resistive Materials,” Fire and Materials, 30, 257-270, 
2006, available in electronic monograph at 
http://ciks.cbt.nist.gov/garbocz/slugpaper1.

http://ciks.cbt.nist.gov/garbocz/slugpaper1
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Raw Data for Exposure of Intumescents
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Determination of Effective k
(courtesy of Dan Flynn, BFRL guest researcher)

∂2T/ ∂z2=(1/α)(∂T/∂t)
With B.C.: T(0,t)=Ft, k(∂T/∂z) +H(∂T/∂t)=0

α is the thermal diffusivity
H is the thermal capacity of one half of the slug plate

F is the rate of temperature increase/decrease of the slug

Solution: T(z,t)=F[t-(H+lC)z/k+Cz2/(2k)]
l is the specimen thickness, C its volumetric heat capacity

ΔT = (Fl/k)*[H+lC/2]
ΔT is the temperature difference across the specimen

k=Fl(H+lC/2)/ΔT=Fl(MScp
S+MFRMcp

FRM)/2AΔT



Slug Calorimeter Results: FRM A

- Good agreement with previously measured values
- Good repeatability in cooling curves for different runs
- Differences between 1st and 2nd heating cycle provide valuable

information on influences of endothermic and exothermic events,
including reactions, phase changes, and mass transfer
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NIST Multi-Layer Fire/Heat Transfer 
Model

• Developed by Kuldeep Prasad 
(kuldeep.prasad@nist.gov, x3968)
– Originally to model performance of layered 

protective clothing for firefighters 
(NISTIR 6881, available at BFRL web site)

– Easily extended to simulating the slug 
calorimeter experiment

• Excellent agreement with experiment as illustrated 
in slides to follow

– Can also be applied to simulation of E119 
and other fire exposures

mailto:kuldeep.prasad@nist.gov


Simulation of Slug Calorimeter 
Experiment – Exterior FRM Temperature
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Simulation of Slug Calorimeter 
Experiment – Internal Slug Temperature
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Summary
• Methodology developed and documented 

for characterizing FRMs with respect to 
thermal performance models

• Measured properties allow accurate 
simulation of thermal performance for slug 
calorimeter experimental setup

• Next steps will be extensions to ASTM 
E119-type tests and real fires



Outreach and Technology Transfer
• New section of electronic monograph on FRMs

– http://ciks.cbt.nist.gov/monograph
– Separate chapters on microstructure, adhesion, and 

thermophysical properties

• BFRL/industry consortium formed 03/06
– http://ciks.cbt.nist.gov/~bentz/FRMconsortium.html
– Seven industrial members each contributing $20 K
– Initial scope of 2 years

• Standardization 
– Efforts are underway for a slug calorimeter standard practice (in 

ASTM E37.05 – Thermophysical Properties)
– Also serving on UL STP 263 where the first of its kind durability 

standard is being developed for FRMs

http://ciks.cbt.nist.gov/monograph
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