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The Error Analysis of a
Steady-State Thermal
Conductivity Measurement
Method With Single Constant
Temperature Region
A method for steady-state thermal conductivity measurement with single constant tem-
perature region has been developed. To better understand the accuracy of the method a
numerical model is devised and verified by experimental results. The ratios of thermal
conductivity derived from the temperature distribution solutions to that given in the
numerical model are obtained and shown. They can be used to correct the systematic
error of measurement introduced by the one-dimensional approximation. Finally, the
measurement uncertainty due to misalignment of the temperature sensors and the limita-
tion of sensing devices is also investigated. The numerical model is suitable for estimat-
ing the range of confidence in practical measurements. �DOI: 10.1115/1.2739585�

Keywords: steady-state thermal conductivity measurment, systematic error, measurment
uncertainty
Introduction
In the applications of the steady-state measurement of thermal

onductivity, at least two constant temperature regions are be-
ieved to be essential as a heat source and a heat sink, respectively.
he constant temperature region as the heat sink requires cumber-
ome equipment. This limits the use of steady-state measurement
ethods in laboratories and makes them unsuitable for in situ
easurements. In other words, it is hard to apply a steady-state
easurement method in a portable apparatus. Extra care has also

een taken in the insulation of the apparatus when test samples
ave small values of thermal conductivity, such as that of the
nsulation materials. In this case, the destruction of the test sample
s inevitable �1�. However, for the composite insulation materials
onsisting of vacuum layers or glass panels �2�, an inverse com-
utational method to evaluate temperature dependence of thermal
onductivity �3�, or materials with a nonhonogenous inner struc-
ure �4�, nondestructive evaluation of the thermal conductivity is
equired.

In spite of the inconvenience steady-state measurement meth-
ds may bring, they are still widely used due to their reliability in
easuring composite insulation materials. To fulfill the require-
ent of nondestructive steady-state measurement of thermal con-

uctivity, Chuah and Sun �5� proposed a method that requires only
ne constant temperature region as the heat source. A detailed
orking principle of the method is given by Chuang �6� who
evised a microcontroller to perform the automatic measuring
rocedures. Here, we give only a brief description and show the
chematic drawing of the device in Fig. 1.

The method makes use of two electronically controlled heating
evices to keep the heating cover and the heating plate at constant
emperatures, TU and T0, respectively, on one side of the test
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sample. The diameter of the heating cover is Do and that of the
heating plate is Dc. The heating plate is placed inside the heating
cover with a small gap, g, inbetween them to avoid direct conduc-
tion heat transfer and maintain a larger area of constant tempera-
ture. The heating cover is placed inside a stainless-steel housing.
The enclosed space between two heating devices and the housing
is filled with aerogel.

On the other side of the test sample, a Teflon disk is placed
aligned with the heating compartment to hold five temperature
sensors. The Teflon disk sizes are Dl in diameter and s in thick-
ness. One of the five temperature sensors is located at the center
of the disk and the other four equally spaced on the concentric
circle of radius d. They are placed on the side of the disk next to
the sample.

Making TU and T0 equal, a region of constant temperature can
be formed on one side of a test sample. This ensures that the
heating power of the heating plate will transmit upward into the
test sample only. Since the heat flux moves mostly in the longitu-
dinal direction across the thickness of the test sample, one can
achieve effective one-dimensional heat transfer in the measure-
ment. When the temperatures on both sides of the test sample
become stable, the temperatures, the thickness of the material, and
the heat flux are measured to evaluate the thermal conductivity of
the test sample. Using this method, the thermal conductivity of a
piece of polystyrene foam was measured and compared with the
result using the guarded hot plate method. The relative difference
is within 3% �7�.

However, due to the multidimensional effect and the tempera-
ture distribution on the low-temperature side, the temperature dif-
ference used to calculate the thermal conductivity may greatly
deviate from that in one-dimensional heat transfer. This situation
can be worsened when the sample thickness is larger. Since the
systematic variation is inevitable, it is then a good practice to
estimate the systematic error of the measured thermal conductivity
as a function of the relative sample thickness, H /Do. The geomet-
ric parameter, Dc over Do, is also considered since it contributes to
the systematic error.
As for the random errors, the sources can be the uncertainties of
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ensor measurement and imperfect alignment of the five tempera-
ure sensors with the heating compartment. They propagate
hrough the formula used for thermal conductivity evaluation.
oth systematic and random errors require close investigation be-

ore the measurement method can be confidently practiced.
To accomplish the analysis without dealing with the errors

aused by insufficiency in the fabrication skill of the experiment
pparatus, we established a theoretical model in axial symmetric
ylindrical coordinates. The theoretical model is solved numeri-
ally because the boundary conditions of free convection are non-
inear and the thermal conductivities of samples are functions of
emperature. For nonlinear problems such as the wall effect on
ot-wire measurements �8�, numerical solutions are often sought.
rom the model, temperature distribution in the sample can be
olved. The heat flux from the heating plate is determined from
he solution of temperature distribution since the temperature
alue is specified on the boundary of the constant temperature
egion.

With the heat flux and the temperature distribution, the thermal
onductivity can be derived from the numerical simulation ac-
ording to the formula of one-dimensional heat conduction used
y the measuring method. This thermal conductivity, denoted as
E, is different from what is specified in the numerical model,
hich is denoted as kR. The ratio of kE to kR, the k ratio rk
kE /kR, is an indication of measurement deviations from real situ-
tions.

By varying the affecting factors, such as H /Do and Dc /Do, one
an derive a series of k ratios that can be used to correct the
easured thermal conductivity in practical applications. Varying
c /Do provides information of the device’s geometric effect. It
ill be shown in Sec. 4 that the geometric effect is smaller as
c /Do is smaller. However, due to the manufacturing technique it

annot be too small. It is noted that as Dc /Do decreases, the gap,
, is maintained at a constant value as well as Do. That is the area
f the constant temperature region remains fixed while the area of
he heating plate decreases. In this case, the temperature in the gap
an be considered uniformly distributed and with the same value
s that of the heating plate and the heating cover.

Fig. 1 The descriptive diagram of
thermal conductivity.
Finally, the thermal conductivity uncertainty is estimated with
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the analysis of the error caused by the measurement uncertainty
that propagates through the formulation used in the method. In the
analysis, an alternative way of determining the maximum tem-
perature on the lower temperature side is proposed. The thermal
conductivity uncertainty is expressed as a function of the mis-
alignment of the temperature sensors with the centerline of the
heating plate on the lower temperature side.

2 The Experiment
In order to verify the numerical model in this study, an experi-

ment is first carried out. According to the measuring method the
thermal conductivity, kE, is

kE�Tm� =
Q̇H

A�T0 − Tmax�
�1�

where Tmax is the maximum temperature at the lower temperature
side of the test sample and Tm= �T0+Tmax� /2 is the mean tempera-
ture at which the test sample is supposed to possess kE.

If the Teflon disk plate is aligned with the heating plate, Tmax
=T1. Since it is hard to align the two parts in real measurements,
Chuah and Sun �5� proposed an approximate function of tempera-
ture distribution as follows

T�x,y� = c1x2 + c2x + c3y2 + c4y + c5 �2�

where ci, i=1. . .5, are five coefficients to be determined with the
five known locations of temperature sensors and the temperatures
measured from each sensor, respectively. The maximum tempera-
ture Tmax occurs at the location where the partial derivatives of
Eq. �2� with respect to x and y are zero, i.e., �T /�x=0 and
�T /�y=0. Substituting the coordinates solved from the set of the
two equations into Eq. �2�, one can obtain Tmax as

Tmax = c5 − � c2
2

4c1
+

c4
2

4c3
� �3�

However, since the geometry of the device is axisymmetric, the
temperature distribution can also be described by the following

device that measures steady-state
the
function
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T�r� = − ar2 + b = − a��x − x0�2 + �y − y0�2� + b �4�

The maximum temperature is supposed to occur at �x0 ,y0�. Us-
ng least squares fit, one can solve for the unknown parameters a,
, and �x0 ,y0�. In the solutions, b is the maximum temperature,

max, which can be expressed as

Tmax = T1 −
�T2 − T3�2 + �T4 − T5�2

4�T2 + T3 + T4 + T5 − 4T1�
�5�

here T1 is measured from the central sensor; T2 and T3 are mea-
ured from the sensors aligned with the center; and T4 and T5 are
easured likewise but in the perpendicular direction. This form of

emperature distribution is much simpler than Eq. �2� because
here is no need to solve any coefficients.

The geometry of the experimental device has the following di-
ensions: Do=218 mm, H=29 mm, Dc=185 mm, R=240 mm,
l=200 mm, d=40 mm, and s=6 mm. The configuration of ex-
erimental device used is in the upsidedown position of that
hown in Fig. 1. The constant temperature region is controlled at
0=40°C. The test sample we use in the experiment is a piece of
xpanded polystyrene type XI �EPS� thermal foam board.

Due to the quality of the heater controllers, the temperature of
he heating plate can only be maintained at 37.95°C. The ambient
ir temperature, Ta, is 23.35°C. When all the readings are stable
or at least 30 min, they are recorded in Table 1. Tmax is evaluated
rom T1 to T5 using Eq. �5�. Substituting the measurement data
nto Eq. �1�, we have 0.0544 W/m K as the kE of the test sample
valuated at Tm=32.59°C.

The Numerical Model
The numerical model used in this study is based on the heat

onduction equation in cylindrical coordinates. Since the device is
xially symmetric, we only need to consider a two-dimensional
roblem. The governing equation is

�c
�T

�t
=

kr

r

�

�r
�r

�T

�r
� + kz

�2T

�z2 �6�

here � and c are the density and heat capacity of the material
nder testing. To simplify the problem, we first assume that the
est sample has a constant c and isotropic k, i.e., kr=kz. The iso-
ropic k value of the test sample �EPS foam of ASTM designation
ype XI� is a function of temperature as

k = 0.000163 � T + 0.04265 �7�

here temperature T is in °C and k is in W/m K. This formula is
erived by linear regression of the data provided by Thermal
oams, Inc. The thermal conductivity of the Teflon disk plate is
lso a function of temperature �9� as

k = 0.001 � T + 0.323 �8�
here the units are the same as those in Eq. �7�.
The boundary conditions of the numerical model are summa-

ized in Table 2 where the origin of the coordinates is at the center
f the Teflon disk plate on the inner surface �as shown in Fig. 1�.

One may argue that the heat transfer across the interface of two
ontact surfaces depends on the profile of the surfaces as in the
tudies of many, such as Wahid et al. �10–12�. In our model, the
nterfaces locate at the two sides of the test sample in contact with
he heating plate and the Teflon disk plate. As a matter of fact, if

Table 1 The readings of the se

1
°C�

T2
�°C�

T3
�°C�

T4
�°C�

7.18 26.95 27.12 27.08
he k value of the test sample is as small as in our case, the contact
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surface effect can be ignored. However, for large k values, dissi-
pative jelly can be applied at the interfaces to fill the voids and
minimize the contact surface effect of the interface air layer.
Therefore, we ignore the effect in our model with the assumption
that one should use dissipative jelly in the practical applications of
the method for measuring the materials of large k value.

As mentioned before, the coefficient of free convection on each
boundary is nonlinear. In this study, we use the empirical formu-
lation of convection coefficient given by Janna �13�. For the ver-
tical surfaces, the formulation is

hL,V =
kf

L
� �0.825 +

0.387RaLC

1/6

�1 + �0.492

Pr
�9/16	8/27


2

�9�

where the unit of convection coefficient is W/m2 K. For the lower
surfaces, the convection coefficient is

hL,Hl
=

kf

L
� 0.27RaLC

1/4 �10�

For the upper surfaces of the test sample, depending on the range
of Rayleigh number the coefficient are given as

hL,Hu
=

kf

L
� 0.54RaLC

1/4, 2.6 � 104 � RaLC
� 107

hL,Hu
=

kf

L
� 0.15RaLC

1/3, 107 � RaLC
� 3 � 1010 �11�

In Eqs. �9�–�11�, kf is the thermal conductivity of the fluid, which
is air in our case; RaLC

is the Rayleigh number based on the
characteristic length LC; Pr is the Prandtl number of the air; and L
is the width of the surface.

Since the measuring method is done under steady-state mea-
surement, the time varying term on the left-hand side of Eq. �6�
equals zero. The successive over relaxation �SOR� method is cho-
sen due to its wide use in parabolic problems. The acceptance
criterion of a convergent solution is that the maximum relative
variation of temperature in the model is less than 10−9.
Asymptotic tests are done first to determine the maximum grid
sizes and the minimum radius of the test sample in the numerical
model.

After the temperature distribution in the numerical model is
solved, the measuring process is simulated by first acquiring tem-
peratures, Ti, at the locations of the five temperature sensors �i

ors and the derived quantities.

T5
�°C�

Q̇
�W�

Tmax
�°C�

Tm
�°C�

27.05 0.541 27.22 32.59

Table 2 The boundary conditions of the model.

r coordinate z coordinate B.C. description

r=0 −s�z�H Axial symmetric
r=R 0�z�H Free conv.a �hL,V�
0�r�Do /2 z=H Isothermal �T=T0�
Do /2�r�R z=H Free conv.b �hL,Hl

�
0�r�Dl /2 z=−s Free conv.c �hL,Hu

�
r=Dl /2 −s�z�0 Free conv.a �hL,V�
Dl /2�r�R z=0 Free conv.c �hL,Hu

�

aEquation �9� on vertical walls.
bEquation �10� on horizontal walls facing downward.
c

ns
Equation �11� on horizontal walls facing upward.

SEPTEMBER 2007, Vol. 129 / 1121
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1,2 ,3 ,4 ,5� and the heat transfer rate of the heating plate, Q̇, out
f the heating plate into the test sample. Tmax can be determined

ccording to Eq. �5�. The heat transfer rate, Q̇, which is supposed
o be the power of the heater on the heating plate, is evaluated as
y

Q̇ = 2���
i=1

m

ri � �ri � k�Ti,n + Ti,n−1

2
� �

Ti,n − Ti,n−1

zn − zn−1
+ �

j=n+1

N �rm

+
�rm

2
� � ��zj � k�Tm,j + Tm+1,j

2
� �

Tm,j − Tm+1,j

rm+1 − rm
+

�zN

2

� k�3Tm,N + Tm,N−1 + 3Tm+1,N + Tm+1,N−1

8
�

�
3Tm,N + Tm,N−1 − 3Tm+1,N − Tm+1,N−1

4�rm+1 − rm� 	 �12�

here zN locates at the interface between the heating plate and the
est sample; rm+�rm /2 locates at the rim of the heating plate; and
zn+zn−1� /2 is the surface where we integrate the heat flux in the

direction. With the resulting Q̇ and Tmax, and the known vari-
bles in the model T0, A= ��Dc

2� /4, and H, the kE from the nu-
erically simulating measurement, can be determined using Eq.

1�. This kE is then divided by kR=k�Tm� evaluated with Eq. �7� to
ive the k ratio for the given parameters.

To analyze the random error of the measurement, we have to
onsider the error from temperature measurement, temperature
ontrol, and the heating power readout that propagate to generate
ncertainty in the measured thermal conductivity �kE. The relative
ncertainty of the measured thermal conductivity ukE

can be ex-
ressed as

ukE
�

�kE

kE
=���Q̇

Q̇
�2

+ � �T0

T0 − Tmax
�2

+ � Tmax

T0 − Tmax

�Tmax

Tmax
�21/2

�13�
In the equation, both the measurement error and the offset of

he temperature sensors that propagate through the temperature
istribution function contribute to �Tmax/Tmax. The situation of
he offset temperature sensors is simulated by finding the tempera-
ure of each sensor from the numerical solution of temperature
istribution on the lower temperature side of the sample with the
esired offset amount.

Results and Discussions
In verifying the numerical model, the numerical model is built

ccording to the setups of the experiment. Except for the constant
emperature region, the temperature distribution on the contact
urface between the sample and the housing is considered. The
emperature in between Do and Dh is specified with linear distri-
ution from T0 to Ta, which is very close to the real situation.
With the parameters specified in the experiment, the asymptotic

ests for the model give the results of 36 longitudinal nodes and
41 radial nodes for the computational domain. The temperature
t the monitoring location where T1 is measured has a relative
ariation of less than 10−4 when the node numbers increase fur-
her.

The results of the simulation are listed in the first row of Table
in which T2–T5 are not listed and are the same due to axial

ymmetric and aligned Teflon disk assumptions. Compared with
he experimental results, although there is at most 3% difference
or all the quantities, the calculated kE using Eq. �1� is also
.0544 W/m K. By this, the numerical model is verified.

In order to see the effect of convection coefficients, the convec-
ion coefficients from Eqs. �9�–�11� are multiplied with a h factor

nd used in the numerical model. The results are shown in the

122 / Vol. 129, SEPTEMBER 2007
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second row of Table 3 and indicate that although the convection
coefficients increase by 20%, the predicted kE varies by less than
1%. This shows that the measuring method is insensitive to the
conditions of the environment. It is interesting to note from the

results that the simulated T1 and Q̇ with the 1.2 h factor are much
closer to the experimental ones. Therefore, Janna’s formulation
may not be able to apply directly in this case. Therefore, the 1.2 h
factor is used in the following simulations for error analysis.

To analyze the systematic error of the measuring method, the
relative thickness of the test sample, H /Do, and the relative diam-
eter of the heating plate, Dc /Do, are varied in the numerical
model. The k ratios resulting from the numerical model are shown
in Fig. 2 with solid symbols, in which the case of the experiment
is indicated by an arrow.

In Fig. 2, it is expected that as the thickness of the sample and
the area of the heating decrease relative to the unchanged constant
temperature area, the situation of ideal one-dimensional heat con-
duction can be better approximated. Also, since the radial heat
flux always makes the heating power of the heating plate larger
than what actually penetrates the sample, it consequently intro-
duces a larger k value. That is, the k ratios of this measurement
method are always greater than unity.

However, the k ratio values do not approach unity when the
relative thickness of the sample approaches zero. This is caused
by the discontinuity of the thermal effusivity, which locates at the
edge of the Teflon disk and is near the rim of the heating cover. As
shown in Fig. 3, the discontinuity of thermal effusivity at Dl con-
tributes to the jag of the temperature distribution. The location is

near Dc, which is the outer boundary of Q̇ considered for calcu-

lating the k value. When the sample thickness is small, Q̇ is still
overestimated since the heat flux is greater in regions not covered
by the Teflon disk. To further show this, the discontinuity of the
thermal effusivity is moved away from the rim of the heating
plate, that is, the size of the Teflon disk is enlarged up to the size
where there is no more change to the resulting k ratios. The final
dimension of the disk is 400 mm in diameter with the associated
ratio Dl /Do=1.84, which is twice the original size. The k ratios
obtained with the new model are also shown in Fig. 2 using open
symbols. The k ratios of the same Dc /Do are smaller than before
and approach unity when the relative thickness approaches zero.

Yet, the values of the k ratio are quite large. It is interesting to
see the effect of the temperature distribution outside the constant
temperature region. To do so, the temperatue varying boundary
condition is removed and the values of the k ratio turn out to be
about half of the previous results. They are shown in Fig. 4 with a
different vertical scale. The effect of the rim is much more obvi-
ous in this case for both the value differences and the shape of the
curves.

In addition to isotropic materials, an anisotropic material is
modeled such that its thermal conductivity in the radial direction
is three times that in the longitudinal direction, i.e., kr=3kz. The
resulting k ratios are so close to that of an isotropic material that
they overlap in the figure and are needless to show in the paper.
This result may suggest that the measurement method is insensi-
tive to the type of material under testing, at least for any compos-
ite material whose effective thermal conductivities in two direc-
tions are related by a proportional factor only.

As for the uncertainty of the measured thermal conductivity

Table 3 The simulation results.

h factor
T1

�°C�
Q̇

�W�
Tmax
�°C�

Tm
�°C�

kE
�W/m K�

1.0 27.68 0.524 27.68 32.82 0.0544
1.2 27.29 0.540 27.29 32.62 0.0540
caused by the measurement uncertainties of the temperature read-
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ngs, the temperature control, the heating power reading, and the
isalignment of the Teflon disk is inspected. The measurement

ncertainties considered in our case are ±0.5°C ��Ti� for tem-
erature measurement �considering a random error of ±0.4°C
rom NIST certified standard for a T-type thermocouple and a bias

rror of ±0.3°C�, ±0.0195 W ��Q̇� �using a 10 W heater with an
-bit resolution pulse width modulation �PWM� controller� for the
ower readout, ±0.5°C ��T0� for constant temperature control,
nd d for both xoffset and yoffset.

In the analysis, both the approximate temperature distribution
unctions, Eqs. �2� and �4�, on the lower temperature surface of a
est sample are considered. Equation �13� gives us an estimation
f relative uncertainty of measured k shown in Fig. 5. In the
gure, the left panel is the uncertainty estimated using Eq. �3� to
valuate Tmax while the right panel is that using Eq. �5�. On the
eft panel, ukE

varies axisymmetrically in the range from 0.08939
o 0.13795. On the right panel, ukE

varies more or less axisym-
etrically in the range from 0.08965 to 0.10353. Comparing the

Fig. 2 The k ratio derived from

Fig. 3 The temperature distributio

sample.

ournal of Heat Transfer
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two panels, one can see that using Eq. �5� to evaluate Tmax intro-
duces less error than using Eq. �3� with the same amount of mis-
alignment.

The reason for this is more mathematical than physical. Equa-
tions �3� and �5� have the same highest order �second order� of
spatial coordinate, which is high enough to describe the relatively
flat distribution shown in Fig. 3 for r�d. However, with five
temperature sensors, Eq. �3� is the highest-order function one can
use. It cannot tolerate the slightest measuement uncertainty since
five known temperature values determine only five unknown co-
efficients. Nonetheless, with Eq. �5�, the measurement uncertainty
of each temperature is allowed since the least-squared-fit method
is used to solve the four unknowns and has a degree of freedom of
1 �5−4�. If a function of higher-order polynomial is used, the
degree of freedom is reduced. Consequently, the approximated
function tolerates less measurement uncertainty.

In order to observe the effect of measurement uncertainties on
ukE

, the uncertainties are varied with the use of both equations to

ifferent geometric parameters.

n the lower temperature side of a
n o
SEPTEMBER 2007, Vol. 129 / 1123
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valuate Tmax. In Fig. 6, the results in Fig. 5 are repeated as Line
and 2 for the left and right panel, respectively, expressed as the

unctions of radial offset, roffset. If the measurement uncertainties

an be lower, such as �Q̇= ±0.00122 W �using a 10 W heater
ith a 12-bit resolution PWM controller�, the measurement uncer-

ainties �Ti and �T0 being the same as ±0.5°C, the values of ukE
educe significantly and are shown as Lines 3 and 4, respectively.
t is noted that the tendency of variation in ukE

with respect to

offset is independent of the measurement uncertainties.

Fig. 4 The k ratio derived without te
stant temperature region.

Fig. 5 The relative uncertainty of kE caused by the uncerta

embedded in the Teflon disk plate using both Eq. „2… „left panel…

124 / Vol. 129, SEPTEMBER 2007

aded 12 Nov 2007 to 163.17.102.12. Redistribution subject to ASME
5 Conclusion
The numerical model for error analysis of the steady-state ther-

mal conductivity measurement method is established. It is verified
by an experiment on a piece of EPS with a prototype measure-
ment device. This model is capable of estimating both systematic
and random error of measurements. With the numerical model,
systematic errors are derived as correction factors �k ratios� to
improve measurement accuracy in practical applications.

In this study, it is found that the diameter of the Teflon disk

erature distribution outside the con-

ies of measurement and the offset of temperature sensors
mp
int

and Eq. „4… „right panel… to evaluate Tmax.
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Downlo
late, Dl, should be larger than two times Do to minimize the
ystematic error. If one wishes to lower the systematic error fur-
her, the housing outside the constant temperature area should not
ontact with the test sample. It is also realized that the measure-
ent method is insensitive to composite materials whose effective

hermal conductivities in two directions are related to a propor-
ional factor only. Furthermore, the use of approximate tempera-
ure distribution function, Eq. �4�, can better describe the actual
ituation and keep minimal the random error introduced by the
isalignment of temperature sensors. This shows that the goal of

sing an approximate temperature distribution function for k mea-
urement is achieved. The random error in k measurement
trongly depends on the uncertainties of the heating power, mea-
uring temperature, and the misalignment of temperature sensors
n the lower temperature side.

Referring to Fig. 4, by choosing proper geometric parameters,
or example, Dc /Do=0.5 and Dl /Do=1.84, the systematic error
an be kept under 5% within a considerable range of sample
hickness, H /Do�0.27. Therefore, the measurement method is
onsidered to be an affordable method due to its simplicity.

However, for more accurate measurements, the systematic error
as to be taken into account. But the systematic error also depends
n the mean temperature, the ambient temperature, and the k value
f the test samples. Though the systematic error can be expressed
s an empirical function of geometric parameters and tempera-
ures, it is almost impossible to make the function in a closed form
ue to its dependency on the unknown itself. Therefore, it is nec-
ssary to perform a large number of calculations with this numeri-
al model and generate an equal amount of results. By using an
ptimization method, such as artificial neuro networks, together
ith the results, it is possible to seek a calibrating function for real

pplications of the measurement method.
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omenclature
a � coefficient of the alternative approximation

temperature distribution function
A � area of the heating plate, m2

b � coefficient of the alternative approximation

ig. 6 The relative uncertainty of kE caused by the uncertain-
ies of measurement and the offset of temperature sensors in
he radial direction.
temperature distribution function
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ci � coefficients of the original approximation tem-
perature distribution function

d � distance of the four temperature sensors from
the center, m

Dc � diameter of the heating plate, m
Dh � diameter of the housing, m
Do � diameter of the constant temperature region, m
Dl � diameter of the Teflon plate, m

hL,Hl � coefficient of free convection on a horizontal
lower surface of width L, W/m2 K

hL,Hu � coefficient of free convection on a horizontal
upper surface of width L, W/m2 K

hL,V � coefficient of free convection on a vertical sur-
face of width L, W/m2 K

H � thickness of a test sample, m
k � thermal conductivity of a homogeneous mate-

rial, W/m K
kf � thermal conductivity of the ambient fluid �air�,

W/m K
kr � translational thermal conductivity of a compos-

ite material, W/m K
kz � longitudinal thermal conductivity of a compos-

ite material, W/m K
kE � measured thermal conductivity of a test

sample, W/m K
kR � real thermal conductivity of the test sample,

W/m K
L � width of a boundary surface of free convec-

tion, m
LC � characteristic length of a free convection sur-

face, m
Pr � Prandtl number of the air

Q̇ � heat transfer rate of the heating plate, W
r � radial coordinate, m

rk � k ratio
R � maximum radius of the test sample in the nu-

merical model, m
RaLC � Rayleigh number based on LC

s � thickness of the Teflon disk plate, m
T0 � temperature of the constant temperature region,

°C
Ta � ambient air temperature, °C
Tc � temperature at the center of the lower tempera-

ture surface, °C
Tmax � maximum temperature on the sample surface

opposite to the constant temperature region, °C
Tm � mean temperature of T0 and Tmax, °C
ukE � relative uncertainty of measured thermal con-

ductivity, kE
x0 ,y0 � location of maximum temperature relative to

the center of the Teflon disk plate, m
z � longitudinal coordinate, m

�r � radial grid size, m
�z � longitudinal grid size, m
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