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ANALYSIS O F  ERRORS D U E  TO E D G E  HEAT LOSS 
I N  GUARDED H O T  PLATES* 

A concise, easily evaluated analytical expression for the error in thermal 
conductivity measurement by the guarded hot plate, due to heat exchange with 
the ambient air, is derived assuming that the temperature distribution along 
the specimen edges may be represented by a mean temperature. This solution 
agrees closely with one presented by Somers and Cyphers for the special 
case of the specimen edges held a t  the cold plate temperature. 

The error is shown to depend upon three dimensionless parameters: (a )  the 
ratio of guard ring width to specimen thickness; (b) the ratio of the length of 
side of the test area to specimen thickness; and ( c )  a number between zero and 
unity whose value is determined by the specimen-edge-temperature distribu- 
tion. The ASTM specimen thickness requirements3 are based only upon the 
first parameter. The approximate effect of the size of the test area upon the 
error is described. 

A procedure is proposed for testing, when necessary, very thick specimens. 
This involves the measurement of the specimen-edge-temperature distribu- 
tion during test (with or without edge insulation), calculation of the error, and 
correction of the measured conductivity. 

The guarded hot plate method for de- 
termining the thermal conductivity of 
building and insulating materials as- 
sumes unidirectional heat conduction 
through the test specimens in the region 

* This paper is a contribution from the Divi- 
sion of Building Research, National Research 
Council of Canada and is published with the 
approval of the Director. 

1 Research Officer, Division of Building Re- 
search, National Research Council of Canada, 
Ottawa, Canada. 

3 The boldface numbers in parentheses refer 
to the list of references appended to this paper, 
see 11. 63. 

Method of Test for Thermal Conductivity 
of Materials by Means of the Guarded Hot  
Plate (C 177 - 45), 1955 Book of ASTM Stand- 
ards, Part 3, p. 1084. 

of the central test area. This is equivalent 
to assuming tha t  the isothermals in the 
section of the specimens adjacent to the 
test area of the heater plate are planes 
parallel to  the hot and cold plate sur- 
faces. T h e  accuracy of the method de- 
pends upon the validity of this assurnp- 
tion. 

Distortion of the isothermals may be 
caused by small differences in tempera- 
ture or unbalances between the test 
and guard areas of the heater plate. 
Errors resulting from this source are 
discussed in a companion paper (2). How- 
ever, even when the test area and guard 
ring are perfectly balanced, unidirec- 



tional heat flow may not occur in the 
,'*test section of the specimens if the width 
of the guard ring is insufficient for the 
thickness of specimen being tested. The 
edges of the test specimens and the edge 
of the guard ring lose or gain heat by 
exchange with the ambient air. This 
results in a non-linear temperature 
distribution along the edge of the 
specimen even when edge insulation is 
applied to reduce the magnitude of the 
edge heat losses. The resulting distortion 

TABLE I.-ASTM SPECIMEN THICKNESS 
REQUIREMENTS. 

a Length of side of test area, in. 

of the isothermals and heat flow lines 
may extend into the test section of the 
specimens and produce an error in the 
measured conductivity if the specimen 
thickness is too large or the guard ring 
width too small. 

For this reason, maximum permissible 

6/lmar 

Maximum 
Thickness of 

Test Specimens, 
lmnx ' 

British Standards Institution (BSI)' are 
based on values of 1.5 and 1.0 respec- 
tively for the lower limit of the ratio 
g/l. However the bases on which these 
minimum values of g/l were selected are 
not clear. The ASTM standard further 
specifies, apparently arbitrarily, mini- 
mum linear dimensions of test area for 
various thicknesses of test specimens. In 
addition to restricting specimen thick- 
nesses, the standard requires that the 
edges of the heater plate, test specimens, 
and cold plates be thermally insulated 
to reduce the net edge heat loss or gain, 
with edge insulation having a thermal 
resistance a t  least twice that of the 
specimen. There does not appear to be 
any published information which gives 
the basis for these requirements. 

PREVIOUS WORK 
In  1951, Somers and Cyphers (1) pre- 

sented a rigorous analytical solution 
which permitted the error in measured 
conductivity to be calculated from the 
known heater plate dimensions and the 
thickness of the specimens being tested. 
This solution assumed that the surface 
heat transfer coefficient h on the edges 
of the specimens approaches infinity 
(h -+ m), and that the ambient air tem- 
perature equals the temperature of the 
cold plates. This was equivalent to 
assuming that the specimen edges are 
maintained a t  a fixed temperature equal 

Minimum Linear Hot 
Plate Dimensions, in., 

square or circular 

specimen thicknesses for given heater Rkunion Internationale des Laboratoires 

plate dimensions have been specified by D'Essais et de Recherches sur les Matbriaux et  
les Constructions-International Assn. of Test- 

the ASTM3 and other organizations in ing and Researcl, ~ a b s .  for ~ a t s .  and Structures. 
their standard methods of test. Table 1 Btilletin, International Assn. of Testing and 

shows the *sTBiI maximum specimen Research Labs. for Mats. and Structures, No. 
19, pp. 1-12 (1954). 

thickness requirements. From this table. Method of Test for Thermal Conductivitv 

T,"zF,",L, 
ZP 

it is evident that these requirements are 
based upon a lower limiting value of 
1.5 for the ratio of guard ring width, g, 
to specimen thickness, I. The thickness 
requirements of RILEM" 6 *  and the 

Guard Ring 
Width, g 

of Building Materials by  Means of the ~ u a r d e d  
Hot Plate, Laboratorio Nacional do Engenharia 
Civil, 13inisterio das Obras Publicas, Portugal. 

Definition of Heat Insulating Terms and 
Methods of Determin~ng Thermal Conductivity 
and Solar Reflectivity, Standard ATo. 874, Brit- 
ish Standards Inst~tution (1939). 



to the cold plate temperature, which, of 
course, is not usually the case, and which 
results in much larger distortions of the 
isothermals and heat flow lines in the 
specimens than would normally occur. 
The errors predicted by Somers and 
Cyphers were thus much larger than the 
actual errors, but how much larger could 
not be determined. Furthermore, their 
solution involves the summation of a 
double infinite series that does not con- 

Cold 

and Cyphers, and by applying the re- 
laxation method to one speczc set of 
test conditions (given values of g, s, and 
I ,  ambient temperature and temperature 
difference between hot and cold plates) 
he obtained an error equal to one half of 
that predicted by Somers and Cyphers 
for the same conditions of g, s, and I.  

More recently Pascal (4) has investi- 
gated this problem. He determined, by  
the relaxation method, the minimum 

Plate  0 C 

Hot P la te  

FIG. 1.-Pascal's Measured Specimen-Edge-Temperature Distribution for a Thick Specimen 
Well Insulated Around its Edges, and the Heat Flow Lines and IsothermalsObtained by the Relaxa- 
tion Method. 

verge rapidly and therefore is not 
simple to evaluate. They concluded that 
the maximum permissible thicknesses 
s~ecified bv ASTM could be more than 
doubled if an error of 5 per cent, as calcu- 
lated from their equation, were accepted. 

Dusinberre (3) in 1952 used the relaxa- . . 
tion technique to predict errors due to 
edge heat loss. By assuming a more re- 
alistic value of h / k B  than did Somers 

8 h = surface heat transfer coefficient for 
specimen or edge insulation. Btu per hr sq ft  
deg Fahr. 

lz = thermal conductivity of test sgecimens, 
Btu in. per hr sq ft deg Fahr. 

value of the ratio g l l ,  guard ring width 
to specimen thickness, which would 
retain unidirectional heat flow in the 
test section of the specimens. The tem- 
perature distribution along the edges of 
specimens was obtained by measurement 
on actual specimens which were well 
insulated against edge heat loss to the 
ambient air. The result of Pascal's relaxa- 
tion solution is shown in Fig. 1 with the 
isothermals and heat Row lines. Beyond 
the dotted line, the isothermals are 
substantially parallel to the hot- and 
cold-plate surfaces. The dotted line repre- 



sents a value of g/l = 0.7 in contrast to 
the minimum permissible value specified 
by ASTM, g/l = 1.5. Two criticisms may 
be made of this solution. I t  was assumed 
that the only parameter affecting edge 
heat loss errors was the ratio g/l, whereas, 
as will be shown later, the ratio s/l, the 
ratio of the test area dimension to speci- 
men thickness, is also an important 
parameter. Secondly, in performing the 
relaxation, two-dimensional flow was 
assumed. This assumption is incorrect 
since the area for lateral heat conduction 

but which is more readily adaptable to 
realistic boundary conditions. 

The following assumptions are made: 
1. The hot and cold plate surfaces 

are isothermal. This assumption neglects 
the existence of the gap separating the 
central test area and the guard ring of 
the heater plate, and also presupposes 
that the test and guard areas are main- 
tained at  the same temperature, that is, 
that the plate is perfectly "balanced." 

2. The edges of specimens are main- 
tained a t  a uniform temperature, this 

i i  I 
- --- 

c o l d  I ~ l a t e  x 
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FIG. 2.-Diagram Representing Part  of the Cross-Section Through the Hot Plate - Test-Speci- 
men - Cold Plate System at  the Center Plane, Showing the Coordinate Axes and Boundary Condi- 
tions. 

increases in proportion to the distance 
from the center of the test: area. 

I t  is thus apparent that the magnitude 
of errors in measured conductivity due to 
edge heat loss is not known with any 
degree of precision. I n  this paper a 
theoretical solution to the problem is 
developed which agrees with that of 
Somers and Cyphers for the special 
boundary conditions assumed by them 

FIG, 3.-The ~ - P l a n e  into Which the ~-Plane  
is Transformed. 



temperature being between the hot and cold plate temperatures. Thus if the cold 
plate temperature is taken as 6 = 0 and the hot plate temperature as e = e l ,  
then the edges of the specimen are assumed to be uniformly a t  a fixed tem- 
perature 6 = eel, where 0 < e < 1. The solution obtained will therefore depend 
upon the value of e selected. Putting e = 0 gives the case of the edges being 
maintained a t  the cold plate temperature, which was the assumption made 
by Somers and Cyphers. Thus the solution derived here will contain that of 
Somers and Cyphers as a special case. 

Figure 2 represents part of a cross-section through the hot plate - test speci- 
men - cold plate system a t  the center plane. M represents the center of the test 
area, BC the guard ring width, and CD the specimen edge for a square heater 
plate. The cold plate DEF is a t  temperature 0 = 0, the specimen edge CD a t  
temperature 0 = eel, and the hot plate AMBC a t  temperature 0 = e l .  D is 
chosen to be the origin of a Cartesian coordinate system. 

To determine the two-dimensional temperature distribution in the specimen 
under the above boundary conditions, Fig. 2 will be transformed by means of a 
Schwarz-Christoffel conformal transformation to Fig. 3 where the tempera- 
ture distribution is more easily determined. This distribution will then be 
transformed back to Fig. 2 using the inverse transformation. I n  Fig. 2, A and 
F may be taken to be a t  x = + a, since this will not affect the temperature dis- 
tribution in the region to the left of M ( x  < x,,,) which is the region of interest. 

The Schwarz-Christoffel transformation which transforms the w-plane (v > 0) 
to the z-plane (AMBCDEF and the space enclosed) is given by: 

where C is a constant to be determined from the known boundary conditions. 
Integrating, 

s = C (  cosh-'(2w - 1) + C') 
where C' is also a constant. 

When z = 0, w = 0; therefore C' = -ir. 
Also when z = il, w = +I. 

:. il = - ixC, C = - I/*, and 

Transposing, 
c0Sh-' (270 - 1) = ix - T E / ~  

= 1 (1 - cosh xz/l) . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . (1) 
2 

This is the transformation that transforms Fig. 2 to Fig. 3. Replacing w by (u + iv) 
and z by ( x  + iy) and separating real and imaginary components, Eq 1 becomes: 



The problem is now to determine the temperature distribution in Fig. 3 above the 
u-axis, with AC a t  temperature 8 = O1 , CD at temperature 0 = eOl , and DF a t  tem- 
perature 8 = 0. 

According to Carslaw and Jaeger (s), in the half-plane v > 0 with v = 0 main- 
tained a t  temperature f(?c), the steady-state temperature distribution is given by: 

This result will now be applied to the w-plane in Fig. 3. I11 this figure the following 
relations hold : 

f ( l l f )  = 0 for - < rl' < 0, 

f ( z c l )  = eel for 0 < 11' < 1 ,  

f ( 1 l ' )  = 81 for 1 < 21' < + m.  

This is the temperature distribution in the w-plane. To obtain the distribution in the 
z-plane, ZL and v are simply replaced by the values given by Eq 2. 

7.c Ty 
cosh -. cos - + 1 

. . . . . .  

By differentiating Eq 4 with respect to y and then putting y = I ,  the temperature 
gradient a t  the hot plate surface is found to be: 



Therefore the heat flux out of the test area is: 

where k is the thermal conductivity of the specimens. Under ideal conditions when 
there are no edge effects and no distortioil of the isothermals and heat flow lines, the 
heat flux would be simply k&/1 which is independent of x. This expression is modi- 
fied by the factor in braces which takes account of the distortion of the ideal tem- 
perature distribution by edge effects. 

This factor has been derived for the t~ilo-dimensional case, that is, for a system 
having the same cross-section as is shown in Fig. 2 but  extending to infinity in the 
two directions normal to the plane of the figure. 

The product solution giving the variation of the heat flux q over the hot plate 
surface of a scjuare heater plate, that is, the three-dimensional case, is as follows: 

1 ( sir):;' + (1 - e)  ( si::f-)] 1 . . .  (6)  

cosh -- + 1 cosh - - 1 

where x' is the space variable corresponding to x in a direction normal to the plane 
of Fig. 2. 

The total heat flow out of one face of the test area will therefore be: 
o+s o+3 

Q = 4 q a s  ds' . L o  L=. 
Performing the integration the followiilg result is obtained: 

x(s + s )  

. . . . . . . . . .  (7) 
cosh - + 1 

But if kc,, is the experimentally measured thermal conductivity under these boundary 
conditions, Q is also given by: 

By equating these two expressioils for Q, given by Eqs  7 and 8, the relationship be- 
tween the "true" conductivity k and the experimentally determined conductivity 



kc,, is found to be: 

This expression from which the error (k,,,/k - 1) in thermal conductivity due to 
edge heat losses may be calculated is, as would be expected, independent of the con- 
ductivity of the specimens being tested. The error depends only upon the two dimen- 
sionless parameters s/l and g/l and also upon e which in turn depends upon the edge 
temperature distribution. Also it satisfies the basic requirement that the error is zero 
for large values of g/l, for if g is large compared with I, then: 

1 
and cosh - = - exp 

1 2  

Thus the error predicted by Eq 9 does tend toward zero as g/l increases. 
Several special cases having different specimen-edge-temperature distributions are 

presented : 
Case I: e = 0 

This is the case treated by Somers and Cyphers, where edges of the specimen are 
maintained at  cold plate temperature. 

When e = 0 is substituted into Eq 9 the following expression is obtained: 

"'\ cosh ~ g / l  -1 1 
This is to be compared with the expression of Somers and Cyphers which is given in 
terms of the two dimensionless parameters: 

and is 

where a = (2172 + 1) and b = (2n + 1). 

Somers and Cyphers presented their results graphically, plotting k/k,,, versus 
zo/yo for two values of the parameter yl/yo, namely 0.5 and 0.8. The evaluation of 
k/k,,, for any other value of yl/yo from their results would entail either a very rough 
estimate from their plotted results or further calculation on the basis of Eq 11. 

The agreement between Eqs 10 and 11 is very close as is evident from Fig. 4 where 



the results of Somers and Cyphers are compared with those calculated from Eq 10 
for the appropriate values of s/l and g/l. 
Case 11: e = 1 

In this case, the edges of the specimens are maintained a t  the hot plate tempera- 
ture. For this special case, Eq 9 becomes: 

) = ,,, ( cash r ( g  + s ) / l  + 

cosh r g / l  + 1 

The errors calculated from this equation are similar in magnitude but of course 
opposite in sign (k > k,,,) to those calculated from E q  10. 

20 - 
Yo 

FIG. 4.-Comparison Between the Results of Somers and Cyphers and those Calculated from 
Eq 10. 

Case 111: e = 0.5 
This case assumes the specimen edges to be maintained a t  a temperature equal to 

the mean of the hot and cold plate temperatures. Equation 9 now becomes: 

lrs/l 
' . . . . ' . . "  . . . " . . . ' ' . . . 

sinh ~ g / l  

This equation predicts relatively small errors, since the boundary condition e = 0.5 
is approximately representative of the ideal case where the temperature gradient 
along the edges of the specimen would be linear, as in the central part of the specimen. 

Equation 9 predicts accurately the error in measured conductivity for the special 
cases of the edges of specimens maintained a t  any uniform temperature between the 
hot and cold plate temperatures. I n  the following section, a method is proposed for 
the representation of actual specimen-edge-temperature distributions by a mean 
constant edge temperature and a corresponding value of e. 



DISCUSSION lated around iLs edges. The method used 

Figure 5 shows k/k , ,  calculated from in arriving a t  this value of e is described 
Eq 9 plotted against specimen thickness later. This value of e applies only to the 

Specimen Thickness L ,  in 

FIG. 5.-k/k, ,p Calculated from Eq 9 Plotted Against Specimen Thickness ior an 8 by 8-in. Hot 
Plate Having s = g = 2 in. for Different Values of e. 

I for an 8 by 8-in. hot plate having specimen thickness, edge insulation, 
s = g = 2 in., for different values of temperature conditions, etc., in the par- 
the parameter e = 0, 0.29, 0.35, 0.40, ticular test performed by Pascal, but is 
0.45, and 0.50. The value e = 0.29 was plotted in Fig. 5 since it does represent 
calculated from the edge-temperature an actual measured edge temperature 
distribution (shown in Fig. 1) measured distribution. Figure 6 is a similar graph 
by Pascal on a thick specimen well insu- of k / k , , ,  versus specimen thickness for a 



hot plate 18 by 18 in. having s = 6, ductivity. Curve c represents the average 
g = 3 in., for values of e = 0, 0.35, 0.40, or mean temperature of the specimen 
0.45, and 0.50. edge for the linear distribution curve a 

Specimen Thickness L ,  in. 
FIG. 6 . - k l k , , ,  Calculated from Eq 9 Plotted Against Specimen Thickness for an 18 by 18-in. 

Hot Plate Having s = 6, g = 3 in. for Different Values of e .  

In  Fig. 7, which shows several hypo- and is approximated by a value for e of 
thetical specimen-edge-temperature dis- 0.5 (Eq 13). The calculated errors' for 
tributions, curve a represents the ideal e = 0.5 are non-zero for large specimen 
linear temperature distribution along thicknesses (see Figs. 5 and 6), but the 
the edge of the specimen from which no deviation froin zero, which is the true 
error would result in the measured con- error, is small. For example, in Fig. 5 for 



e = 0.5 and I as high as 3 in., the calcu- 
lated error is only 0.6 per cent. 

This suggests that the actual meas- 
ured specimen-edge-temperature distri- 
bution may be approximately repre- 
sented by an average edge temperature 
for the purposes of error evaluation; this 
average edge temperature defines a 
corresponding value of e, and it appears 
that the error calculated from E q  9 with 
this value of e will differ only slightly 
from the true error. Suppose the meas- 

Specimen Edge 

FIG. 7.-Several Hypothetical Specimen- 
Edge-Temperature Distributions. 

ured specimen-edge-temperature distri- 
bution is represented by curve b in Fig. 7. 
The mean edge temperature is then given 
by curve d, which is drawn in such a way 
that the shaded areas are equal. This 
defines an approximate value of e for such 
a distribution. Then using this value of 
e, together with the known values of g, 
s, and I for the test under consideration, 
the approximate error to be expected in 
the measured conductivity may be calcu- 
lated. This approximate error will be 
larger than the true error, since the 
assumption of a constant edge tempera- 
ture produces a still greater distortion of 
the heat flow lines. However, the differ- 
ence between the true and calculated 

errors may only be an amount less than 
or equal to the amount by which the 
calculated e = 0.5 error deviates from 
zero, which has already been shown to 
be small. This will require experimental 
verification. 

Since the specimen-edge-temperature 
distribution depends upon the specimeil 
thickness, the correspondiilg value of 
e will also depend upon thickness. This 
means that an experimentally deter- 
mined curve of k/k, , ,  versus specimen 
thickness will not coincide with any of 
the calculated error curves obtained by 
assuming a constant value of e, such as 
those shown in Figs. 5 and 6. 

A difficulty in measuring the specimen- 
edge-temperature distribution may be 
pointed out. If the hot plate apparatus 
is a horizontal one, that is with the plates 
and specimens stacked one above the 
other, the edge temperature distribution 
will be the same on all four edges of the 
specimen. If, however, the apparatus is 
arranged vertically, which is the most 
common arrangement, different edge 
temperature distributions will occur on 
the top, side, and bottom edges of the 
specimens. Such an arrangement would 
reauire the measurement of the edge 
diskbutions on all four edges, t i e  
average then being taken for the calcula- 
tion of e. 

As has been pointed out, both ASTM 
and RILEM require g/l,,, = 1.5, 
whereas the BSI permits g/l,,, = 1.0. 
Pascal from his work concluded that 
g/l,,, = 0.7 would result in negligible 
errors when the edges of specimens are 
well insulated. For the heater plate con- 
sidered in Fig. 5, the maximum permis- 
sible thicknesses for test specimens 
according to these three requirements 
would be 1.33, 2.00, and 2.86 in. re- 
spectively. These are shown in Fig. 5, 
where it may be seen that, if e is assumed 
to be 0.29, specimens of these thicknesses 



would result in errors of approximately 
0.2, 2.3 and 6.6 per cent, respectively. 

Figure 5 suggests that the ASTM 
maximum specimen thickness require- 
ment is not too stringent for accurate 
test work with an 8 by 8-in. hot plate 
(s = g  = 2 in.). Comparing Fig. 5 with 
Fig. 6, which is for an 18 by 18-in. hot 
plate, the error curves in Fig. 6 are dis- 
placed to the right (that is, the direction 
of increasing thickness) with respect to 
the ASTM maximum thickness limit. 
This suggests that thicker specimens 
than are allowed by the ASTM require- 

ductivity, (1 - k/k,,) X 100, as calcu- 
lated from Eq 9, is shown for heater 
plates having different sizes of test area. 

To determine the permissible variation 
of the ratio g / l m ,  with size of test area 
2s, to keep errors in measured conduc- 
tivity below any desired limiting value 
(say 0.25 per cent), a series of experi- 
mental tests with different sizes of hot 
plate is required. If the difference be- 
tween the true error and that calculated 
from Eq 9 is found to be small, then to 
determine the error for any specific set 
of hot plate dimensions, all that would 
be required would be the measurement of 

TABLE 11.-EFFECT OF SIZE OF TEST the specimen-edge-temperature distri- 
IN MEASURED 'ON- bution under the test conditions. Such a DUCTIVITY. 

e = 0.29. a = 1 = 2 in. series of tests is being planned in this 
Where e is a dimensionless numberrepresenta- laboratory with the three available sizes 

tive of specimen edge temperature distribution. of hot plates. 

ment might be tested in larger plates 
with the same accuracy, allowing the 
value of g / l m ,  to decrease as the plate 
size increases. At present the ASTM 
requirement specifies minimum linear 
dimensions of the test area for a given 
test specimen thickness (see Table I). A 
requirement which specified values of 
g/ lmaS for different sizes of test areas 
would permit more flexibility in the 
design of heater plates than does the 
present requirement. 

The effect of the size of the test area 
upon the error in measured conductivity 
is illustrated in Table 11, where, for a 

Length of Side of 
Heater Plate, 
2 (1 + s), in. 

guard ring width of 2 in., a specimen 
thickness of 2 in., and an edge-tempera- 
ture distribution represented by e = 0.29, 
the percentage error in measured con- 

Half-Length of 
Side of Test 
Area, s, in. 

To reduce errors caused by edge heat 
loss to a minimum, the ASTM standard 
method of test requires that insulation 
be placed around the edges of the heater 
plate, test specimens, and cold plates, "of 
such a thickness that the resistance to 
edge losses shall be a t  least twice and 
preferably three or more times the 
thermal resistance of the specimen in the 
direction of normal heat flow." There is 
no published information that provides 
the basis for this requirement. Also it is 
a blanket requirement for all tests, taking 
no account of varying test conditions. 
I t  would be more satisfactory if the exact 
amount of edge insulation could be 
specified for any given set of test condi- 
tions. The more edge insulation applied, 
the closer will the specimen-edge-tem- 
perature distribution tend toward the 
ideal straight-line distribution for which 
there is no error. The error depends, 
however, upon other factors besides the 
thermal resistance to edge losses. I n  the 
case of no edge insulation, the specimen- 
edge-temperature distribution, and hence 
the error, depend upon the conductivity, 
thickness, and surface heat transfer co- 

Per Cent Error 
in Measured 
Conductivity 

(1 - k / k e x p )  
X 100 



efficient of the specimens, the ambient 
air temperature, t h e  mean temperature 
and the hot plate - cold plate tempera- 
ture difference of the test. When edge 
insulation is applied, the specimen-edge- 
temperature distribution and the error 
depend upon the thickness and conduc- 
tivity of the edge insulation, as well as 
upon all the above factors. The orienta- 
tion of the apparatus, whether vertical 
or horizontal. will also be a factor for 
both cases. A limited testing program is 
being set up to determine the amount of 
edge insulation required for several test 
conditions, and, in this test series too, 
the analytical solution presented may 
prove to be of assistance. 

The situation often arises where speci- 
mens must be tested whose thickness 
exceeds the maximum permissible in the 
available hot-plate apparatus. In  such a 
situation the error may be minimized by 
applying large amounts of edge insula- 
tion and keeping the ambient air tem- 
perature close to the mean temperature 
of test. Even when these precautions 
have been taken, the error in testing 
thick specimens may be large. If the 
specimen-edge temperature is measured 
during test, the appropriate value of e 
may be calculated, the approximate 
error determined from Eq 9, and the 
measured conductivity corrected accord- 
ingly. 

The following conclusions may be 
drawn from the analysis presented: 

1. An analytical expression for the 
error in conductivity measurement by 
the guarded hot plate, due to edge heat 
exchange with the ambient air, has been 
obtained, assuming that the actual 
specimen-edge-temperature distribution 
may be represented by a uniform mean 
temperature. The solution agrees closely 
with that of Somers and Cyphers for the 
boundary conditions assumed by them 
and is much simpler to evaluate. 

2. The ratio of the length of side of 
test area of the heater plate to the speci- 
men thickness is an important factor in 
determining the error, as well as the ratio 
of guard ring width to specimen thick- 
ness. I t  is shown that for a prescribed 
guard ring width and acceptable error, 
the larger the test area, the thicker the 
specimens that may be tested. 

3. Experimental data are needed to 
enable the establishment of maximum 
specimen thickness requirements and 
edge insulation requirements on a more 
rational basis. The analytical solution 
presented may perhaps be of assistance 
in this respect. Experimental data are 
also needed to test the applicability of 
the procedure suggested for testing very 
thick specimens, when necessary. 
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