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ABSTRACT 
A new design for a thin film heat flux sensor is presented. It is easier to fabricate than previous 

designs, for a given heat flux has an order of magnitude larger signal, and is more easily scalable than 
previous designs. Transient and steady state data are also presented. 

 
INTRODUCTION 

 Heat flux is one of a number of parameters, together with pressure, temperature, flow, etc., of 
interest to engine designers and fluid dynamicists. There are various designs of heat flux sensors, such 
as Gardon gauges (Ref. 1), plug gauges (Ref. 2), and thin film thermocouple arrays (Ref. 3). The thin 
film types have the advantage of high frequency response and minimal flow disturbance (Ref. 4). 

 All heat flux sensors operate by measuring the temperature difference across a thermal 
resistance. Current designs use thermocouples to measure this temperature difference. Because of the 
small temperature differences involved, and the small output of a single junction, the thermocouples 
are arranged as a thermopile (Fig. 1).  This raises the output by a factor of 30 to 100, depending on the 
number of junctions in the array.  Nevertheless, the signal level is still low, typically a few 
µV/(Watt/cm2). In addition, the precise alignment required to place each thermocouple element 
correctly makes fabrication difficult, and restricts the minimum size to about a fourth of an inch in 
diameter. 

 Thus we seek a design that retains the advantages of thin films, has a larger output, is easier to 
fabricate, and can be made smaller. 

 
FABRICATION 

The new sensor design consists of a Wheatstone bridge deposited onto a 0.040 in. (1 mm) 
alumina substrate.  Since one is fabricating a resistor array rather than a thermocouple array, this 
design is much simpler to fabricate than other designs.  Alumina is chosen because its thermal 
conductivity is relatively high (higher than some metals) so that the sensor will not change the thermal 
resistance and thus distort the measurement. Alumina also has good high temperature properties, and is 
inexpensive.  

The temperature sensitive element is sputter deposited platinum, with line width and line 
spacing typically a few thousandths of an inch. Platinum also has excellent high temperature 
properties, and the variation of its electrical resistance with temperature is well characterized. The 
alumina is washed with soap and DI water, solvent cleaned, dried, and then the pattern applied using a 
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newly developed photolithography technique.  On the single sided gauges, approximately 5µm of 
silicon dioxide is sputtered over diagonally opposite arms of the bridge. 

 
DESCRIPTION, PRINCIPLE OF OPERATION 

 Several variations of the new heat flux sensor are shown in figures 2 and 3, in both single sided 
and double-sided designs. In all cases, the sensor consists of a four active arm Wheatstone bridge, two 
arms of which are covered by an extra thermal resistance. In the two-sided designs, the substrate upon 
which the sensor is mounted acts as the extra resistance, and in the one sided designs, the extra 
resistance is sputtered or electron beam deposited over two of the arms. The bridge itself is made of a 
material with a high temperature coefficient of resistance, such as platinum or nickel. 

With no heat flux applied to the sensor, all of the bridge elements (A, B, C and D in figures 2 
and 3) are at the initial temperature T0, and have resistance R0. With the application of heat flux, the 
two elements of the bridge not covered by the layer of thermal resistance (B and C) are at a surface 
temperature designated TS, and the other two elements under the film of thermal resistance (A and D) 
are at the temperature TF < TS. The resistance of the elements are then respectively R0[[[[1+ββββ(TS-T0)]]]] 
and R0[[[[1+ββββ(TF-T0)]]]], where ββββ is the linear temperature coefficient of resistance. 

 
If the bridge excitation is V volts, the output from one arm is 
 

 
(((( ))))[[[[ ]]]]

(((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]]0F00S0

0S0
2 TT1RTT1R

TT1R
VV

−−−−ββββ++++++++−−−−ββββ++++
−−−−ββββ++++====  

 
and from the other arm is 
 

 
(((( ))))[[[[ ]]]]

(((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]]0F00S0

0F0
1 TT1RTT1R

TT1R
VV

−−−−ββββ++++++++−−−−ββββ++++
−−−−ββββ++++==== . 

 
Notice that, R0, the initial value of the resistance, cancels. 
 
The instantaneous output from the sensor is then 
 

 [[[[ ]]]])TT()TT(2
)TT(

VVVV
0S0F

FS
12SIG −−−−++++−−−−ββββ++++

−−−−ββββ====−−−−==== . 

 
Modeling the gauge then consists of calculating the values of TF and TS and relating them to 

the incident heat flux. 
 

STEADY STATE RESPONSE 
 The gauge is modeled as one-dimensional heat transfer into a two-layer composite as shown in 

figure 4. The gauge, of thickness l, is mounted on a heat sink, of thickness L. The interface between 
the layers is at x = 0, the surface exposed to the heat flux Q is at x = -l, and the base of the substrate is 
at x = L. In the region –l<x<0, the temperature is T1 (x), and the thermal conductivity is k1. In the 
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region 0<x<L, the temperature is T2 (x), and the thermal conductivity is k2. The temperatures T1 and 

T2 satisfy the steady state heat equation 0
dx

Td
2

2

==== , and satisfy the boundary conditions  

 (((( )))) Qlx
dx
dT

k 1
1 ====−−−−====−−−−  

 
  (((( )))) (((( ))))0T0T 21 ====  
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k 2
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1
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  (((( )))) 02 TLxT ========  
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heat flux, the sensor output is 
 

 




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Typically, for the two sided gauge, 
 
l = 0.040” = 1.016 x 10-3 m 
L = 1” = 2.54 x 10-2 m 
k1 = 36 W/m/K  (Al2O3)  
k2 = 15 W/m/K  (type 304 stainless) 
ββββ = 3.98 x 10-3 K-1 (Pt). 
 
With a bridge excitation V of one volt and a heat flux Q of 1 W/cm2 = 104 W/m2, 
 

137.2
10x13.1

V
3

SIG

−−−−

====  = 528 (µµµµV/V)/(W/cm2). 

 
For the one sided gauge, one would typically sputter approximately 5µm SiO2 (k1 = 1.4 

W/m/K) over the appropriate arms of the bridge. In this case, the output is approximately 68 
(µV/V)/(W/cm2). These outputs compare favorably with values for commercial gauges, 150 
µV/(W/cm2) and 8 µV/(W/cm2) for high temperature gauges. 
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TRANSIENT RESPONSE 
In many applications, the transient response of the gauge is of interest. For time varying heat 

flux, or while the gauge is coming to equilibrium, it is necessary to find TS and TF as functions of time. 
The temperatures in each layer, the gauge and the substrate, satisfy the heat equation 

 
                           

   
2

2

x
T

k
t
T

c
∂∂∂∂
∂∂∂∂====

∂∂∂∂
∂∂∂∂ρρρρ ,  

 
where  ρρρρ = mass density, kg/m3 
            c = specific heat, J/kg/K 
and      k =  thermal conductivity, W/m/K. 
 
 
For a semi-infinite plane initially at temperature T0, with a constant heat flux Q into the surface 

at x =0, starting at t = 0, the temperature as a function of x and t is 
 

 (((( )))) 


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x
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Qx

e
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k
Q2

Tt,xT t4

x

0
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where  
c

k
ρρρρ

====αααα  is the thermal diffusivity, m2/s, 

 

and (((( )))) (((( )))) dte
2

1xerf1xerfc
x

0

t2

∫∫∫∫ −−−−

ππππ
−−−−====−−−−====  is the complementary error function. Note that 

erfc(0) = 1, and erfc(∞∞∞∞) = 0.    (Ref. 5)  
 
Laplace Transforms can be used to find solutions in terms of infinite series of error functions 

for the case of planes of finite thickness and for composite planes, but a more practical approach is to 
solve the problem numerically. In addition, it is possible to solve such problems as temperature 
dependant material properties or time varying heat flux. 

 A one dimensional finite volume technique (Ref. 6) was used to find the surface and film 
temperatures as function of time and position. At the surface x = 0, a constant heat flux is applied 
starting at t = 0, while at the other surface, x = L, the temperature is held constant. The model is a layer 
of either 0.040 in. (1 mm) alumina for the two sided design or 5µm SiO2 for the one sided design, on 
1” (25.4 mm) stainless steel. The time variation is calculated fully implicitly. The temperatures Ts and 
TF are respectively the calculated surface (x = 0) and interface temperatures. 

 
DISCUSSION 

As can be seen from figures 5–8, the gauges exhibit first order response, with the double-sided 
gauge having a time constant of approximately 270 µsec and the single sided gauge a time constant of 
roughly 7 µsec. These correspond to frequency responses (-3dB) of about 589 Hz and 23 kHz, 
respectively. The response of the single sided gauge is comparable to that of the fastest commercial 
gauges, with advertised time constants of 6±2 µsec. 
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Although testing the sensors in relevant environments is planned, experimentally verifying 
these numbers is problematical.  As it is difficult to produce a step change in heat flux, it may be 
necessary to use the procedure used in ref. 4 to measure frequency response, that is, to chop the beam 
from a high power laser to produce a square wave input to the gauge, measure the rate at which the 
harmonics of the output signal decay with frequency, and compare the decay rate with that of an ideal 
system with an infinite frequency response.  A thermopile design that should have dynamics similar to 
our single sided design showed a frequency response of only a few kHz. This may be because the 
insulator used in the thermopile design was nearly transparent to the laser light, lessening the 
temperature difference, and producing a “droopy” square wave and lower amplitude harmonics. The 
large amount of metal in the thermopile also reduces the temperature difference.  It may also be 
possible to test gauge response by using a shock tube, but the heat transfer coefficient is unknown. At 
this point, numerical simulation may be the best option, at least for comparing designs. 

 
CONCLUSION 

We have described in this paper a thin film heat flux sensor that is simpler to fabricate than 
previous gauges, has higher output, and excellent transient response.   

Construction of the double sided and single sided designs is ongoing, and in the near future we 
will be able to compare the predicted and actual gauge outputs. 
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Figure 1:  Thermopile-Based Thin Film Heat Flux Sensor (Heat Flux is into the picture). 
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Figure 2: Double-Sided Thin Film Wheatstone Bridge Heat Flux Sensor. 



NASA/TM2002-211566 7 

 
 
 
 
 

 

V1 
V+ 

V2 

V- 
C 

D 

B 

A 

Top 
Face 

Heat 
Flux 

 
 

Figure 3: Single-Sided Thin Film Wheatstone Bridge Heat Flux Sensor. 
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Figure 4: Schematic of One-Dimensional Heat Transfer into a Two-Layer Composite. 
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Double-Sided Thin Film Heat Flux Sensor
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Figure 5:  Modeled Short-Term Response for a Double-Sided Wheatstone Bridge 
Heat Flux Sensor. 
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Figure 6: Modeled Long-Term Response for a Double-Sided Wheatstone Bridge 
Heat Flux Sensor. 
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Single-Sided Thin Film Heat Flux Sensor 
Short-Term Transient Response
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Figure 7:  Modeled Short-Term Response for a Single-Sided Wheatstone Bridge 
Heat Flux Sensor. 
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Figure 8:  Modeled Long-Term Response for a Single-Sided Wheatstone Bridge 
Heat Flux Sensor. 
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