Intercomparison of thermal diffusivity measurements on CuCrZr and PMMA

MAGNUS ROHDE1*, FRANK HEMBERGER2, THOMAS BAUER3, JÜRGEN BLUMM4, THOMAS FEND5, TOBIAS HäUSER6, ULF HAMMERSCHMIDT7, WOLFGANG HOHENAUER8, KLAUS JAENICKE-RÖSSLER9, ERHARD KASCHNITZ10, EWALD PFAFF11 AND GERALD PINTSUK12

1Karlruhe Institute of Technology (KIT), Institute for Applied Materials, Germany
2Zentrum für Angewandte Energietechnik (ZAE), Bayern, Germany
3Deutsches Zentrum für Luft- Raumfahrt (DLR-TT), Institute of Technical Thermodynamics, Köln, Germany
4Netzsch Gerätebau GmbH, Germany
5Deutsches Zentrum für Luft- und Raumfahrt (DLR-SF), Institute of Solar Research, Köln, Germany
6Brandenburgische Technische Universität, Cottbus, Germany
7Physikalisch Technische Bundesanstalt (PTB), Braunschweig, Germany
8Austrian Institute of Technology (AIT), Seibersdorf, Germany
9Fraunhofer Institut für Keramik und Technische Systeme (IKTS), Dresden, Germany
10Österreichisches Gießerei-Institut (ÖGI), Leoben, Germany
11Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany
12Forschungszentrum Jülich (FZJ), Jülich, Germany

Received: July 23, 2013. Accepted: September 25, 2013.

The results of an inter laboratory comparison of thermal diffusivity measurements on two different materials, namely a copper alloy (CuCrZr) and a polymer (PMMA), are presented here. Both materials were selected with respect to their different thermal conductivity, since the copper alloy belongs to the family of good metallic conductors whereas the polymer is characterized by a low thermal conductivity. The measurements of the thermal diffusivity have been performed within a temperature range from RT to 500°C for the copper alloy and from RT to 100°C for the PMMA, respectively.

Keywords: ???
1 INTRODUCTION

The thermal diffusivity is an important temperature dependent property which determines the time dependent heat flow in a large number of industrial applications but also in fundamental materials studies. Furthermore, it is directly related to the thermal conductivity, another important thermo-physical property which describes the heat flow within materials. Both properties can be converted into each other by considering the density and specific heat. Therefore, since the measurement of the thermal diffusivity is often easier and faster, the thermal conductivity of a material is frequently determined using its measured thermal diffusivity value multiplied by its density and heat capacity at a particular temperature.

For the laboratory intercomparison two different materials were selected: a copper alloy (CuCrZr) [1] and a polymer (PMMA). Both materials exhibit large differences in their thermal diffusivity and correlated thermal conductivity values. The CuCrZr-copper alloy belongs to the class of good metallic conductors with high electrical and thermal conductivity [2,3]. The PMMA polymer is a dielectric material with no significant electrical conductivity and a low thermal conductivity value [4,5]. Also, the optical properties are completely different since the copper alloy is opaque over a large wavelength range, whereas the PMMA exhibits a high transmission in the visible (VIS) and near infrared (NIR).

2 PARTICIPANTS AND MEASUREMENT METHODS

<table>
<thead>
<tr>
<th>Participants</th>
<th>Material</th>
<th>Measurement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIT Seibersdorf</td>
<td>CuCrZr / PMMA</td>
<td>Laser Flash</td>
</tr>
<tr>
<td>BTU Cottbus</td>
<td>CuCrZr / PMMA</td>
<td>Laser Flash</td>
</tr>
<tr>
<td>DLR Köln</td>
<td>PMMA</td>
<td>Hot Disk</td>
</tr>
<tr>
<td>FZ Jülich</td>
<td>CuCrZr / PMMA</td>
<td>Laser Flash</td>
</tr>
<tr>
<td>IKTS Dresden</td>
<td>CuCrZr / PMMA</td>
<td>Laser Flash</td>
</tr>
<tr>
<td>KIT Karlsruhe</td>
<td>CuCrZr / PMMA</td>
<td>Laser Flash</td>
</tr>
<tr>
<td>Netzsch GmbH</td>
<td>CuCrZr</td>
<td>Laser Flash</td>
</tr>
<tr>
<td>ÖGI Leoben</td>
<td>CuCrZr / PMMA</td>
<td>Laser Flash</td>
</tr>
<tr>
<td>PTB Braunschweig</td>
<td>PMMA</td>
<td>Transient Hot Bridge</td>
</tr>
<tr>
<td>RWTH Aachen</td>
<td>CuCrZr/PMMA</td>
<td>Laser Flash</td>
</tr>
<tr>
<td>ZAE Bayern</td>
<td>PMMA</td>
<td>Laser Flash</td>
</tr>
<tr>
<td>DLR Stuttgart</td>
<td>CuCrZr/PMMA</td>
<td>Laser Flash</td>
</tr>
</tbody>
</table>
The total number of participants for this study was 12, whereas 11 laboratories delivered data for the polymer system PMMA and 9 labs measured the thermal diffusivity on the copper alloy CuCrZr.

3 SAMPLE DESCRIPTION AND PREPARATION

The CuCrZr samples used in this study were manufactured starting from a bar shaped piece with a geometry of 35 × 35 × 1000 mm³. The material was delivered by the company Zollern/Laucherthal. The composition given in mass-% was Cu-0.8Cr-0.08Zr.

The PMMA samples were delivered as plates by Evonik Röhm GmbH (Darmstadt, Germany). The plates (Plexiglas XT) were completely colourless and clear with a high optical transmission which was larger than 90% in the range of the visible wavelength but with no transmission within the UV range.

4 MEASUREMENT AND EVALUATION

All measurements of thermal diffusivity of the Cu alloy were performed with the Laser Flash method. Also, nearly all measurements of the PMMA samples were done using the Laser Flash apparatus but with two exceptions where the hot disk or the transient hot bridge has been applied.

5 RESULTS

The results of the measured thermal diffusivity data of the CuCrZr alloy as a function of the temperature are shown in Fig.1. Each participating laboratory included one data set. The thermal diffusivity of the Cu alloy decreases nearly linearly with increasing temperature. Starting at a room temperature value of about (100 ± 4) mm²/s the thermal diffusivity decreases to (90 ± 5) mm²/s. Although each single data set shows a decreasing behaviour of the thermal diffusivity as a function of the temperature the evaluated temperature coefficients are different leading to larger spreading of the data at the maximum temperature of 500°C.

The thermal diffusivity data of PMMA as a function of the temperature of each participating laboratory are shown in Fig. 2. With the exception of one data set the temperature covered within this study was room temperature up to 100°C. Only one laboratory extended this range below room temperature down to –20°C.

Although the absolute values of the thermal diffusivity measured by different laboratories show a significant spread the slope with regard to the
temperature appear to be nearly identical. The thermal diffusivity decreases with a slope of −2.7·10⁻⁴ mm²/(s·K) as function of temperature within the temperature range of RT to 100°C. The additional data below room temperature measured by only one laboratory confirm this result.
Based on the data sets delivered by the contributing laboratories mean values of each material system were calculated. For the copper alloy CuCrZr the average values of the thermal diffusivity as a function of the temperature are shown in Fig. 3. The diffusivity values decrease with increasing temperature nearly linearly starting at about \((100 \pm 2.3) \text{ mm}^2 \text{ s}^{-1}\) at room temperature to a value of \((90 \pm 3.7) \text{ mm}^2 \text{ s}^{-1}\). Over the measured temperature range a relative expanded uncertainty \((K = 2)\) of about 3.7% was estimated.

The mean diffusivity values of the polymer system PMMA are shown in Fig. 4, which were only calculated for the temperature range from RT to 100°C. The values below room temperature, which were delivered by one participant, were not included in this calculation. The thermal diffusivity decreases from \((0,114 \pm 0,0035 \text{ mm}^2 \text{ s}^{-1})\) at room temperature to \((0,093 \pm 0,0040 \text{ mm}^2 \text{ s}^{-1})\) at 100°C. Over this temperature range a relative expanded uncertainty \((K = 2)\) of about 3.8% was estimated. Although the temperature covered within this study extends beyond the glass temperature of the amorphous PMMA at around 80°C no effect of the “softening” on the thermal transport parameter can be observed in the averaged data set.

7 CONCLUSION

The specific objective of this inter laboratory comparison was to consider materials with either high or very low thermal conductivity/diffusivity. This
intercomparison delivered thermal diffusivity values for the polymer system PMMA and for the Cu-alloy CuCrZr with relative uncertainties of less than 4% and about 4–5%, respectively. A further reduction of the measurement uncertainties might be possible by a restriction of the temperature range used in future studies in order to avoid an irreversible thermal treatment of the material [2,5].

REFERENCES