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A HYBRID METHOD FOR MEASURING HEAT FLUX 

David O. Hubble and Tom E. Diller. 
Virginia Polytechnic Institute and State University 

This paper reports on the development and evaluation of a novel hybrid method for 
obtaining heat flux measurements. By combining spatial and temporal temperature 
measurements, it is shown that both the time response and accuracy of a heat flux sensor can 
be improved. This hybrid method was shown to increase the time response of a heat flux 
sensor mounted on a high conductivity material by a factor of 28 compared to a standard 
spatial sensor. Furthermore, this analysis allows the heat flux sensor to be much less 
sensitive to the material to which it is mounted. It was shown that changing the thermal 
conductivity of the backing material four orders of magnitude caused only an 11% change in 
sensor error. This method is validated both numerically and experimentally and 
demonstrates significant improvement compared to operating the sensor as a spatial or 
temporal sensor alone. 

 

1. Introduction 
 Modeling of thermal systems requires a 
combination of temperatures and energy fluxes for 
prediction of their performance. Temperatures are 
commonly measured by a variety of standard methods, 
but the measurement of heat flux is a particular 
challenge because it is an energy flux normal to a plane 
of material rather than a property of a material. 
Therefore, sensors to measure heat flux usually must be 
mounted onto a material that provides a good heat sink 
so that the energy flow is not impeded. This makes it 
very difficult to use heat flux gages to measure heat 
flux on materials that are not good thermal conductors. 
The purpose of this paper is to present a new method 
which allows heat flux gages to make accurate 
measurements on any type of backing material. 
Applications include furnaces to thermal protection 
systems for spacecraft. 

2. Background 
Two of the most common modes of heat flux 

measurement are that of a differential heat flux sensor 
and that of a slug calorimeter [1]. A differential heat 
flux sensor measures the temperature difference over a 
spatial distance with a known thermal resistance, as 
illustrated in Fig. 1. This gives the heat flux through the 
sensor from the steady-state version of Fourier’s Law 
with k as the thermal conductivity of the resistance 
layer and δ as the thickness of the resistance layer. T1 is 

the temperature of the exposed face while T2 is the 
temperature at the back of the sensor. 

  " 1 2
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δ
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Under steady-state conditions the heat flux entering the 
sensor in Fig. 1, q1", is equal to that leaving, q2". Hager 
[2]  calculated the 98% response time to a step change 
of heat flux at the surface in terms of the sensor’s 
thickness and thermal diffusivity. This is often 
considered as steady-state.  

 
2
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Hager’s [2] analysis was performed on the ideal case of 
a sensor mounted on a perfect heat sink where the 
backside temperature, T2, remains constant. 

 
In a slug calorimeter the amount of thermal energy 
absorbed by the sensor is measured as a function of 
time. The rate of change of the sensor’s temperature is 
measured and its thermal capacitance is known. 
Conservation of energy for a control volume 
surrounding the sensor “slug” yields 

  1 2Slug " "" avedTq C q q
dt

ρ δ= = −   (3)

where ρCδ is the thermal mass of the slug per sensor 
area. 
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T2 but this temporal increase is accompanied by a large 
overshoot. 

 
Fig. 3  Comparison of slug calorimeter response 

using different temperature measurements 

 
The overshoot associated with using T1 in the slug 

measurement is a result of the t  dependence of the 
surface temperature which has an infinite derivative at 
t=0. While the overshoot associated with using the 
average of the two surface temperatures is initially 
large, its error is smaller than the standard method for 
all Fourier numbers greater than 0.02. Therefore, in 
many situations it is advantageous to utilize this 
average temperature in order to increase the temporal 
response of the sensor. From this point on, q"Slug will 
denote a slug calorimeter that utilizes the average of T1 
and T2 unless specified otherwise. 

  1 2
1 2

Slug " ""
2

q q
T Tdq C

dt
ρ δ ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

+=   (8)

3.3 Hybrid Heat Flux. To combine the spatial and 
temporal responses of a heat flux sensor, only Eqs. (7) 
and (8) are needed, as repeated here.  
  1 2 Differential" " 2 "q q q+ =   (9)

 
 

1 2 Slug" " "q q q− =   (10)

Combining Eqs. (9) and (10), and solving for the 
desired q1" yields 

  1 Differential Slug
1" " "
2

= +q q q   (11)

Equation  (11) shows how the outputs of a differential 
sensor and a slug calorimeter can be combined. This 
hybrid of the spatial and temporal responses can be 
used to more accurately measure the heat flux at the 
sensor surface, q1". While this represents a simple 
model, it was derived from basic thermal energy 
conservation. 

  The validity of Eq. (11) can be supported by 
examining two limiting cases. First, consider the limit 
of a perfectly insulating backing material. For this case, 
the one-dimensional heat equation within the sensor 
simplifies to 

 
2

2 Const.=d T
dx

  (12)

once quasi-steady state is reached. The solution to this 
equation yields a temperature profile within the sensor 
that will be perfectly quadratic with a slope of zero at 
x=δ since q2"=0. This means, using Eq. (6), that the 
differential sensor will measure exactly half the heat 
flux entering the sensor. That is, q"Differential =½ 
(q1"+q2")=½(q1"+0)= ½ q1". Also, since q2" is exactly 
zero for this case, the slug calorimeter will measure the 
heat flux perfectly, i.e. q"Slug =q1". Therefore, the hybrid 
method described in Eq. (11) will exactly measure the 
correct heat flux for this case.  

Another limiting case occurs when the entire system 
is at steady-state on a perfect heat sink (d2T/dx2=0). For 
this case, the temperature profile within the sensor is 
linear. Consequently, the differential sensor will 
measure the exact heat flux; q"Differential= q1". Also, since 
the system is at steady-state, the time derivative of the 
temperature everywhere in the sensor is zero and the 
slug calorimeter will measure zero heat flux. Once 
again, the HHF method (Eq. (11)) perfectly handles this 
limiting case.  

The HHF method requires that a sensor be designed 
such that T1, T2, and ΔT are measured. However, 
accurately measuring any two of these allows the third 
to be calculated since ΔT=T1- T2. For the two sensors 
already mentioned [8, 9] this will not require any 
change in design as these sensors already measure the 
required temperatures. Also, none of the 
aforementioned analysis placed any requirements on 
which temperatures were used in evaluating the slug 
calorimeter term. That is, Eq. (8) is valid regardless of 
which temperatures are used. As will be seen, changing 
which temperatures are used to evaluate this term will 
significantly affect the performance of the HHF 
method. 

4. HHF Numerical Validation 
In order to validate the HHF concept, 1-D transient 

conduction through the sensor-backing system (Fig. 1) 
was modeled using finite-difference computations. This 
was done using an in-house developed code which 
utilizes an implicit discretization of the 1-D heat 
equation in MATLAB. The derivation of this 
discretization can be found in [10]. The boundary 
conditions at the senor face allowed any thermal 
condition to be applied including time varying fluxes 
and convective or radiative conditions. Temporal and 
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spatial steps were kept sufficiently small to eliminate 
any grid and time step dependence. This was verified 
for the parameters shown in Table 1 by increasing both 
the temporal and spatial resolution by a factor of ten 
and comparing the results to those obtained using the 
lower resolution. In both cases, the discrepancy was 
less than 0.1%. Changing material properties as well as 
the thickness of the sensor allowed for any sensor 
design to be tested. Also, the material properties and 
thickness of the backing material could be varied to 
investigate how this affected sensor performance. For 
all numerical simulations shown, the high temperature 
heat flux sensor (HTHFS) [9] was modeled mounted on 
a backing material three times thicker than the sensor. It 
was verified that the baking material thickness did not 
significantly affect the analysis. This was done by 
varying the thickness from one to ten times the 
thickness of the sensor which caused less than a 3% 
change in sensor performance. For all tests, the 
boundary condition at the back surface of the backing 
material was held at a constant temperature. Table 1 
summarizes the parameters used in the numerical 
simulations. 

Table 1 Parameters used in numerical simulation 

 
At each time step in the code, the temperatures at 

the face and back of the sensor (T1 and T2) were 
recorded. This allowed the sensor’s performance in all 
three modes of operation to be evaluated using only 
these two temperature histories along with the sensor’s 
properties. The sensor’s response to a step heat flux of 
q0" is plotted against Fourier number (dimensionless 
time) in Fig. 4.  

The properties of the backing material were 
identical to the properties of the sensor. As a slug 
calorimeter, the sensor’s accuracy falls off with time 
while the differential sensor’s accuracy increases with 
time. This is due to the fact that as the temperature of 
the sensor increases, more and more heat is conducted 
through the sensor into the backing material (q2" is 
increasing). Figure 4c shows the speed and accuracy of 
the HHF method. Not only does the HHF capture the 
transient better than the slug calorimeter, it settles to the 

steady state value much more quickly than the 
differential sensor. 

 
Fig. 4  Simulated response of sensor in three modes 

of operation 

 
  While Fig. 4 showed the response of the three 
methods to a step input while mounted on a material 
with the same properties as the sensor, this analysis can 
be extended. Fig. 5 shows the error of the three methods 
as a function of time and backing material thermal 
conductivity. In these tests, the backing material’s 
thermal conductivity was stepped from 100 times lower 
than that of the sensor to 100 times greater. Then, for 
each backing material, the analysis was run and the 
error to a step change in q1" was calculated as a 
function of time. These errors define specific regions as 
shown and demonstrate the potential of the HHF. Not 
only is the HHF more accurate and faster than both the 
differential sensor and the slug calorimeter, it’s 
performance is also much less dependent on the 
properties of the backing material as indicated by the 
much narrower region. In fact, although the backing 
material thermal conductivity is varied by four orders of 
magnitude, at no point does this cause more than an 
11% change  

This analysis also allows the response time to be 
calculated as a function of backing material properties. 
The HHF method obtains accuracy to within 2% at a 
Fourier number of 0.33 when mounted on an insulator 
and 1.40 when mounted on a conductor. Even on a 
perfect conductor, which is the best case scenario for a 
differential sensor, the HHF is faster (Fo=1.4 vs. 1.5). 
Finally, it is worth noting that for all Fourier numbers 
greater than 0.02, the error of the HHF is never more 
than ±20% regardless of backing material. For 

Parameter Value Units 
Sensor thermal conductivity 22 W/m K
Sensor density 7278 kg/m3 

Sensor specific heat 548 J/kg K
Sensor thickness 3.175 mm 
Backing thickness 9.525 mm 
Backing thermal conductivity 0.22 to 2200 W/m K
Spatial step 0.03175 mm 
Time step 0.5 ms 
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comparison, a differential sensor requires a Fourier 
number greater than 0.57 to measure the heat flux to 
within ±20% on a perfect conductor, 28 times slower 
than the HHF. 
in the error of the HHF.   

 
Fig. 5  Error as a function of time and backing 

material thermal conductivity 

 
Fig. 4 and Fig. 5 demonstrate the response of the 

HHF method to a step change in heat flux while 
mounted on a wide range of backing material thermal 
conductivities. The primary limitation with the HHF 
method is the large over prediction in heat flux at 
Fourier numbers less than 0.02. As discussed 
previously, this is due to using the surface temperature 
in the slug calorimeter term (Eq. (8)). In certain 
situations, it would be desirable to eliminate this 
overshoot. This can be accomplished by using only the 
back temperature (T2) in the slug calorimeter term 
which eliminates the overshoot at the cost of a slower 
time response as shown in Fig. 3. The effect that this 
change has on a sensor using the hybrid method is 
shown in Fig. 6. Hereafter, if the slug term of the hybrid 
method only includes the back temperature (T2), it will 
be referred to as the HHF2 method. Fig. 6 shows that 
there is no overshoot and the HHF2 method still 
accurately measures the steady-state heat flux 
regardless of backing material. The only drawback to 
this method is its slower response time compared to the 
standard HHF method. While the time required to reach 
an accuracy of 2% is essentially unchanged, the time 
required for accuracy within 20% is drastically 
different. As previously mentioned, for any Fourier 
number greater than 0.02 the HHF was within 20%. 
With the HHF2 method a Fourier number greater than 
0.57 is required, the same as for a differential sensor on 
a perfect conductor. This implies that if the sensor is 
perfectly heat sunk, the HHF2 method offers no 
advantages compared to a standard differential sensor. 

For all real materials, however, the HHF2 method is 
superior to either the differential sensor or the slug 
calorimeter. At the other extreme, the hybrid method 
was applied with the slug term only containing T1 
(HHF1). This response is shown in Fig. 7 and 
demonstrates the versatility of the hybrid method. By 
simply changing the weighting of T1 and T2 in the slug 
term the response can be changed drastically. Fig. 5 
through Fig. 7 show that as the ratio T1/T2 in the slug 
term of the hybrid method increases, the overshoot 
increases and the response time decreases. In this case, 
accuracy within 2% is obtained at a Fourier number of 
0.75 which represents a significant improvement 
compared to the value of 1.40 for the standard hybrid 
method shown in Fig. 5. 

 
Fig. 6  Error of HHF2 using only T2 in slug 

calorimeter term of HHF compared to standard 
methods 

 
Fig. 7  Error of HHF1 using only T1 in slug 

calorimeter term of HHF compared to standard 
methods 

On the other hand, accuracy within 20% doesn’t 
occur until a Fourier number of 0.125 is reached instead 
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of 0.02 which is significantly slower. With this in mind, 
it is worth noting that Fig. 6 and Fig. 7 represent two 
extremes for implementing the hybrid method and 
which method is best must be determined on a case by 
case basis. If no overshoot can be tolerated, T2 should 
be heavily weighted. On the other hand, if response 
time is critical and some overshoot can be tolerated, T1 
should be more heavily weighted. Some 
experimentation might be required to determine the 
optimal weighting for a given set of measurements. The 
case where the two temperatures are weighted evenly 
(Fig. 5) is shown as a good tradeoff between overshoot 
and response time.  

 

5. HHF Experimental Validation 
To further validate the hybrid method, it was 

applied to a sensor which was tested experimentally. 
The sensor tested was the HTHFS [9] which measures a 
top and bottom surface temperature as well as the 
differential temperature of a thermal resistance layer. 
This sensor was tested using two backing conditions; 
water cooled and insulated. The testing was performed 
in a stagnating jet convection stand which was fully 
characterized by Gifford et al. [11]. This stand, shown 
in Fig. 8, consists of a fully adjustable T-nozzle which 
directs a jet of hot air at both  

 
Fig. 8  Stagnation flow convection calibration facility 

 
the test sensor and a Vatell Corp. HFM-7® reference 
sensor. This sensor measures both heat flux and surface 
temperature and has been shown to have a time 
response better than 100 kHz [12]. The turbulent heat 
transfer coefficient on each side of the T-nozzle is 
identical to within approximately 3% at the stagnation 
point. The jet recovery temperature (Tr) was measured 
by stretching thin type K thermocouples in the flow 
1mm above the two sensors. These two recovery 
temperatures were identical to within 4%. Using the 
HFM’s heat flux and surface temperature output with 
the measured jet recovery temperature, the convective 
heat transfer coefficient was calculated. 

 
"

=
−

HFM

HFM

r S

qh
T T

  (13)

The heat transfer coefficient is shown as a function of 
time in Fig. 9. This coefficient is constant on the mean 
to within 2% throughout the test. Once the convective 
heat transfer coefficient is known, the heat flux to the 
test sensor can be calculated using the recovery 
temperature and the measured surface temperature of 
the HTHFS. 

  ( )" "= − −
HTHFSrHTHFS S Radiationq h T T q   (14)

The radiation term was included to account for any net 
radiation leaving the sensor face. Since the HTHFS is 
painted using Krylon™ ultra flat-black spray paint, the 
emissivity was assumed to be 0.97 [13]. For all tests, 
the radiative flux was less than 2% of the convective 
flux. 
 

 
Fig. 9  Convective heat transfer coefficient 

 
The calculated heat flux is shown with the output of 

the HTHFS in Fig. 10 through Fig. 13. Fig. 10 shows 
the response of the sensor operated as a differential 
sensor, a slug calorimeter, and using the HHF method 
while mounted on a water cooled backing. The 
limitations of the slug calorimeter and differential 
sensor are obvious. Since the backing is water cooled, 
this represents the best case scenario for a differential 
sensor. Although the differential method performs well 
at steady-state, it has a slow time response. The slug 
calorimeter does not give an accurate measurement and 
as the sensor reaches steady-state, the slug calorimeter’s 
output trends to zero. This is as expected and 
demonstrates why slug calorimeters cannot be used on 
conductive materials or to measure steady-state heat 
fluxes.  

The HHF method eliminates these problems and 
performs just as predicted numerically. The HHF has 
the fast time response of the slug calorimeter, then 
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trends to the steady-state heat flux more quickly than 
the differential sensor. This is the exact behavior 
predicted of the HHF in Fig. 5. 

 
Fig. 10  Sensor on water cooled backing 

 
 
Fig. 11 shows the same test as Fig. 10 except the 

slug calorimeter’s response was calculated using only 
T2 and the HHF2 method was applied. As expected, the 
overshoot at the beginning of the test is eliminated for 
the HHF2 method at the expense of a slower response 
time. As predicted in Fig. 6, an accurate measurement 
of the steady-state heat flux is still made. 

 
Fig. 11  Sensor on water cooled backing using only 

T2 in slug and hybrid method 

 
Fig. 12 and Fig. 13 show the response of the sensor 

mounted on a block of low conductivity, fibrous 
alumina insulation. Here the curves appear much 
different than for the water cooled case. In this test, the 
influx of heat quickly trends to zero. This is because the 
HTHFS surface temperature quickly warms to the 
recovery temperature since very little heat leaves the 

sensor. That is, the temperature difference driving the 
heat flow trends to zero causing the heat flux to trend to 
zero. Although the test time is short, the advantages of 
the HHF method are still easily recognized. This time, 
the differential sensor is unable to accurately measure 
the heat flux. This is because q2" is much less than q1" 
which implies that the average of q2" and q1" is not an 
accurate measure of q1". On the other hand, since q2" is 
small, the slug calorimeter works relatively well in this 
case. From Eq. (10), the more q2" is minimized (the 
better the insulation), the more accurately the slug 
calorimeter will measure q1". As stated previously, in 
the limit as the backing material becomes a perfect 
insulator, the HHF method and the slug calorimeter will 
give identical results once quasi-steady state is reached. 
Therefore, for any real insulator with non-zero thermal 
conductivity, the HHF method will outperform the slug 
calorimeter. This is shown in Fig. 12. Even on this very 
low conductivity substance, there is still enough heat 
leaving the back surface of the sensor that the HHF 
method more accurately measures the heat flux 
compared to the slug calorimeter. 

 
Fig. 12  Sensor on insulated backing 

 
Fig. 13 shows the same test as Fig. 12 except only 

T2 is used in the slug and hybrid analysis. Once again, 
the HHF2 method accurately measures the heat flux 
with a much smaller overshoot. Here it is more difficult 
to see any slower time response. This is reasonable 
because, as shown in Fig. 6, as the backing material 
thermal conductivity is reduced, the time response of 
the HHF2 improves. More experimentation is needed to 
fully examine the time response characteristics of 
sensors utilizing the various forms of the hybrid 
method. Finally, it is worth noting that the HHF2 
outputs in Fig. 11 and Fig. 13 show less noise than their 
HHF counterparts in Fig. 10 and Fig. 12. This is due to 
the fact that any fluctuations in surface temperature 
(due to turbulence in the jet in this case) have been 
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significantly dampened by the time they reach the back 
of the sensor. Conversely, the noise would be even 
worse if only the surface temperature (T1) were used as 
in Fig. 7. 

 
Fig. 13  Sensor on insulated backing using only T2 in 

slug and hybrid method 

It is worth reiterating that a water-cooled backing is 
the best case scenario for a differential sensor just as an 
insulated backing is the best case scenario for a slug 
calorimeter. These represent the two extremes. The 
hybrid heat flux method performs as well as both the 
slug calorimeter and the differential sensor at the two 
extremes and outperforms them anywhere in between.  

6. Conclusions 
This paper outlines a hybrid method for obtaining 

surface heat flux measurements. It is shown that by 
combining both spatial and temporal temperature 
measurements in a hybrid method, the time response 
and accuracy of heat flux sensors can be improved. 
More importantly, the hybrid method causes the 
response to be much less dependent on the properties of 
the material to which the sensor is mounted. All that is 
required of the sensor for this method to be applied is 
for the histories of the top and bottom surface 
temperatures as well as the temperature drop across the 
sensor to be measured. In addition, it was shown that by 
adjusting how the temperatures used in the HHF 
method were weighted, the hybrid method could be 
specifically tailored to a particular test. The hybrid 
method was validated by performing numerical 
simulations which were supported by experimentation. 
These results show significant improvements compared 
to operating the sensor as solely a spatial or temporal 
heat flux sensor.  
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Nomenclature 
 
C = specific heat 
Δt = time between temperature measurements, 
inverse of sampling frequency 
Fo = Fourier number, tα/δ2 

k = thermal conductivity 
q" = heat flux 
q0" = step change heat flux for simulation 
q1" = heat flux into sensor face 
q2" = heat flux out of sensor back 
ρ = density 
t = time  
tss = time to reach steady-state 
T1 = temperature at sensor face 
T2 = temperature at sensor back 
Tave = average sensor temperature 
α = thermal diffusivity of sensor, k/ρC  
δ = thickness of sensor 
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